Mr K marsh


Problem Statement :


Mr K has a rectangular plot of land which may have marshes where fenceposts cannot be set. He wants you to find the perimeter of the largest rectangular fence that can be built on this land.

For example, in the following m*n = 4*4 grid, x marks a marsh and . marks good land.

....
..x.
..x.
x...

If we number the rows and columns starting with 1, we see that there are two main areas that can be fenced: (1,1)-(3,2) and (1,2)-(4,4). The longest perimeter is 10.

Function Description

Complete the kMarsh function in the editor below. It should print either an integer or impossible.

kMarsh has the following parameter(s):

grid: an array of strings that represent the grid
Input Format

The first line contains two space-separated integers m and n, the grid rows and columns.
Each of the next m lines contains n characters each describing the state of the land. 'x' (ascii value: 120) if it is a marsh and '.' ( ascii value:46) otherwise.

Constraints
2 <= m,n <= 500

Output Format

Output contains a single integer - the largest perimeter. If the rectangular fence cannot be built, print impossible.



Solution :



title-img


                            Solution in C :

In C++ :





#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
    int m,n,c=0;
    cin>>m>>n;
    char A[500][500];
    int col[500][500]={0,0},row[500][500]={0,0};
    for(int i=0;i<m;i++)
    {
        for(int j=0;j<n;j++)
        {
            cin>>A[i][j];
        }
    }
    for(int j=0;j<n;j++)
    {
        c=0;
        for(int i=m-1;i>=0;i--)
        {
            if(A[i][j]=='x')
            {
                c=0;
                col[i][j]=c;
            }
            else
            {
                col[i][j]=c;
                c++;
            }
        }
    }
    for(int i=0;i<m;i++)
    {
        c=0;
        for(int j=n-1;j>=0;j--)
        {
            if(A[i][j]=='x')
            {
                c=0;
                row[i][j]=c;
            }
            else
            {
                row[i][j]=c;
                c++;
            }
        }
    }
    /*for(int i=0;i<m;i++)
    {
        for(int j=0;j<n;j++)
        {
            cout<<row[i][j]<<" ";
        }
        cout<<"\n";
    }
    cout<<"\n";
    for(int i=0;i<m;i++)
    {
        for(int j=0;j<n;j++)
        {
            cout<<col[i][j]<<" ";
        }
        cout<<"\n";
    }*/
    int ans=0;
    for(int i=0;i<m;i++)
    {
        for(int j=0;j<n;j++)
        {
            int k,l,lim=row[i][j],mincol;
            for(k=1;k<=lim;k++)
            {
                mincol=min(col[i][j],col[i][j+k]);
                for(l=mincol;l>=1;l--)
                {
                    if(row[i+l][j]>=k)
                        break;
                }
                if(l>0)
                    ans=max(ans,2*(l+k));
            }
        }
    }
    if(ans>0)
        cout<<ans;
    else
        cout<<"impossible";
    return 0;
}








In Java :





import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

    static int      m, n;
    static String[] land;

    static int[][]  row;
    static int[][]  col;

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        m = in.nextInt();
        n = in.nextInt();
        in.nextLine();
        land = new String[m];
        for (int i = 0; i < m; i++) {
            land[i] = in.nextLine().trim();
        }
        System.out.println(solve());
    }

    private static String solve() {
        row = new int[m][n];
        col = new int[m][n];
        calcReach();
        int max = getMaxPeri();
        if (max == 0) {
            return "impossible";
        } else {
            return max + "";
        }
    }

    private static int getMaxPeri() {
        int max = 0;
        for (int i = m - 1; i > 0; i--) {
            for (int j = n - 1; j > 0; j--) {
                if (land[i].charAt(j) == 'x') {
                    continue;
                }
                int t = getMaxPeri(i, j);
                if (t > max) {
                    max = t;
                }
            }
        }
        return max;
    }

    private static int getMaxPeri(int r, int c) {
        int mr = row[r][c];
        int mc = col[r][c];
        int cc = c;
        int mpr = 0;
        for (int i = mr; i < r; i++) {
            for (int j = mc; j < c && j < cc; j++) {
                if (row[r][j] <= i && col[i][c] <= j) {
                    cc = j;
                    int tp = 2 * (r - i + c - j);
                    if (tp > mpr) {
                        mpr = tp;
                    }
                    break;
                }
            }
        }
        return mpr;
    }

    private static void calcReach() {
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (land[i].charAt(j) == 'x') {
                    row[i][j] = -1;
                    col[i][j] = -1;
                } else {
                    if (j > 0 && land[i].charAt(j - 1) == '.') {
                        col[i][j] = col[i][j - 1];
                    } else {
                        col[i][j] = j;
                    }
                    if (i > 0 && land[i - 1].charAt(j) == '.') {
                        row[i][j] = row[i - 1][j];
                    } else {
                        row[i][j] = i;
                    }
                }
            }
        }
    }

}








In C :





#include <stdio.h>


long long M,a[1000][1000],b[1000],i,j,k,l,m,n,v=0;
char c[1000];


void test(long long aa, long long bb)
{
long long vv;

vv = 2*(aa+bb);

if(vv > v) v = vv;

//printf("test %lld %lld\n", aa,bb);

return ;
}

int main()
{

scanf("%lld %lld",&M, &n);


for(i=0;i<M;i++)
    {
     scanf("%s",c);
     for(j=0;j<n;j++) 
     {
//       printf("-%c\n",c[j]);
       if(c[j]=='.') a[i][j] = 0; else a[i][j] = 1;
     }   
     
    }
/*
for(i=0;i<M;i++)
{

 for(j=0;j<n;j++) 
    {
 printf("%lld ",a[i][j]);
    }

printf("\n");
}
*/

for(i=1;i<M;i++)
{
for(j=0;j<=i;j++) b[j] = -1;
 
 for(j=0;j<n;j++)
  {

//printf("%lld =i %lld =j\n",i,j);
//for(m=i-1;m>=0;m--) printf("m=%lld -> %lld\n",m,b[m]);


   k = a[i][j];
  
   for(m=i-1;m>=0;m--)
     {
       if(a[i][j]) b[m] = -1;
     
       if(a[m][j] == 1) 
         {
           k = 1;
           b[m] = -1;
           continue;
         }
      
       if(k==0 && b[m]!=-1) test(i-m,j-b[m]);
     
       if(k==0 && b[m] == -1) b[m] = j;        
     
     }
  
  
  }
}

if(v) printf("%lld\n",v);
 else printf("impossible\n");

return 0;
}








In Python3 :





N,M=map(int,input().split())
up=[[0 for i in range(M)]for n in range(N)]
left=[]
land=[[x for x in input()] for i in range(N)]
for i in range(N):
    left.append([0 for x in range(M)])
    for j in range(M):
        if j==0:
            left[i][j]=0 if land[i][j]!='x' else -1
        elif land[i][j]=='x':
            left[i][j]=-1
        else:
            left[i][j]=left[i][j-1]+1
for i in range(M):
    for j in range(N):
        if j==0:
            up[j][i]=0 if land[j][i]!='x' else -1
        elif land[j][i]=='x':
            up[j][i]=-1
        else:
            up[j][i]=up[j-1][i]+1
max_perimeter=-1
for row in range(N-1,0,-1):
    for column in range(M-1,0,-1):
        for k in range(column-left[row][column],column):
            for temp in range(1,min(up[row][column],up[row][k])+1):
                if left[row-temp][column]>=(column-k):
                    max_perimeter=max(max_perimeter,2*(temp+column-k))
print(max_perimeter if max_perimeter>0 else 'impossible')
                        








View More Similar Problems

Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t

View Solution →

Counting On a Tree

Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n

View Solution →

Polynomial Division

Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie

View Solution →

Costly Intervals

Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the

View Solution →

The Strange Function

One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting

View Solution →

Self-Driving Bus

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever

View Solution →