Maximize the Number of Equivalent Pairs After Swaps - Google Top Interview Questions


Problem Statement :


You are given a list of integers of the same length A and B. 

You are also given a two-dimensional list of integers C where each element is of the form [i, j] which means that you can swap A[i] and A[j] as many times as you want.

Return the maximum number of pairs where A[i] = B[i] after the swapping.

Constraints

n ≤ 100,000 where n is the length of A and B

m ≤ 100,000 where m is the length of C

Example 1

Input

A = [1, 2, 3, 4]

B = [2, 1, 4, 3]

C = [

    [0, 1],

    [2, 3]

]

Output

4

Explanation

We can swap A[0] with A[1] then A[2] with A[3].



Solution :



title-img




                        Solution in C++ :

class UnionFind {
    private:
    vector<int> parents, rank;

    public:
    UnionFind(int n) {
        parents.resize(n);
        rank.resize(n);
        for (int i = 0; i < n; i++) {
            parents[i] = i;
            rank[i] = 1;
        }
    }

    int find(int node) {
        int root = node;

        while (root != parents[root]) {
            root = parents[root];
        }

        // Path compression
        while (node != root) {
            int temp = parents[node];
            parents[node] = root;
            node = temp;
        }

        return root;
    }

    void unify(int a, int b) {
        int rootA = find(a);
        int rootB = find(b);

        if (rootA == rootB) return;

        // Union by rank
        if (rank[rootA] > rank[rootB]) {
            parents[rootB] = rootA;
        } else if (rank[rootB] > rank[rootA]) {
            parents[rootA] = rootB;
        } else {
            parents[rootB] = rootA;
            rank[rootA]++;
        }
    }

    vector<int> get_parents_array() {
        return parents;
    }
};

// Time and Space: O(N)
int solve(vector<int>& A, vector<int>& B, vector<vector<int>>& C) {
    int n = A.size();
    UnionFind union_find(n);

    for (vector<int>& edge : C) {
        union_find.unify(edge[0], edge[1]);  // Do unions to form groups
    }

    vector<int> parents = union_find.get_parents_array();
    unordered_map<int, vector<int>> grp_map;

    for (int i = 0; i < n; i++) {
        int parent = union_find.find(i);
        grp_map[parent].push_back(i);  // Map parents to list of indices in their group
    }

    int count = 0;

    for (auto& grp : grp_map) {  // For each group
        vector<int>& indices = grp.second;
        unordered_map<int, int> value_map;

        for (int idx : indices) {  // Map values found
            value_map[A[idx]]++;
        }

        for (int idx : indices) {  // For same indices check how many matched values are found
            if (--value_map[B[idx]] >= 0) {
                count++;
            }
        }
    }

    return count;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    class DisjointSet {
        int node;
        DisjointSet parent;
        public DisjointSet(int val) {
            this.node = val;
            this.parent = this;
        }
    }

    private Map<Integer, DisjointSet> map = new HashMap();
    private Map<Integer, List<Integer>> swappableMap = new HashMap();
    public int solve(int[] A, int[] B, int[][] C) {
        int count = 0;
        if (A.length == 0 || B.length == 0)
            return 0;
        for (int i = 0; i < A.length; i++) map.put(i, new DisjointSet(i));

        for (int[] arr : C) {
            int idx1 = arr[0];
            int idx2 = arr[1];
            union(idx1, idx2);
        }

        for (int i = 0; i < A.length; i++) {
            DisjointSet set = map.get(i);
            DisjointSet par = find(set);
            swappableMap.computeIfAbsent(par.node, k -> new ArrayList()).add(i);
        }

        for (int key : swappableMap.keySet()) {
            List<Integer> list = swappableMap.get(key);

            Map<Integer, Integer> freq1 = new HashMap();
            Map<Integer, Integer> freq2 = new HashMap();

            for (int i = 0; i < list.size(); i++) {
                int idx = list.get(i);
                freq1.put(A[idx], freq1.getOrDefault(A[idx], 0) + 1);
                freq2.put(B[idx], freq2.getOrDefault(B[idx], 0) + 1);
            }
            for (int num : freq1.keySet()) {
                count += (Math.min(freq1.get(num), freq2.getOrDefault(num, 0)));
            }
        }
        return count;
    }

    private void union(int idx1, int idx2) {
        DisjointSet set1 = map.get(idx1);
        DisjointSet set2 = map.get(idx2);

        DisjointSet f1 = find(set1);
        DisjointSet f2 = find(set2);

        if (f1.node == f2.node)
            return;
        f1.parent = f2;
    }

    private DisjointSet find(DisjointSet set) {
        if (set.parent == set)
            return set;
        return set.parent = find(set.parent);
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, A, B, edges):
        N = len(A)
        graph = [[] for _ in range(N)]
        for u, v in edges:
            graph[u].append(v)
            graph[v].append(u)

        ans = 0
        seen = [False] * N
        for u in range(N):
            if not seen[u]:
                queue = [u]
                seen[u] = True
                for node in queue:
                    for nei in graph[node]:
                        if not seen[nei]:
                            queue.append(nei)
                            seen[nei] = True

                count = Counter(B[i] for i in queue)
                for i in queue:
                    if count[A[i]]:
                        count[A[i]] -= 1
                        ans += 1

        return ans
                    


View More Similar Problems

Print in Reverse

Given a pointer to the head of a singly-linked list, print each data value from the reversed list. If the given list is empty, do not print anything. Example head* refers to the linked list with data values 1->2->3->Null Print the following: 3 2 1 Function Description: Complete the reversePrint function in the editor below. reversePrint has the following parameters: Sing

View Solution →

Reverse a linked list

Given the pointer to the head node of a linked list, change the next pointers of the nodes so that their order is reversed. The head pointer given may be null meaning that the initial list is empty. Example: head references the list 1->2->3->Null. Manipulate the next pointers of each node in place and return head, now referencing the head of the list 3->2->1->Null. Function Descriptio

View Solution →

Compare two linked lists

You’re given the pointer to the head nodes of two linked lists. Compare the data in the nodes of the linked lists to check if they are equal. If all data attributes are equal and the lists are the same length, return 1. Otherwise, return 0. Example: list1=1->2->3->Null list2=1->2->3->4->Null The two lists have equal data attributes for the first 3 nodes. list2 is longer, though, so the lis

View Solution →

Merge two sorted linked lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the heads of two sorted linked lists, merge them into a single, sorted linked list. Either head pointer may be null meaning that the corresponding list is empty. Example headA refers to 1 -> 3 -> 7 -> NULL headB refers to 1 -> 2 -> NULL The new list is 1 -> 1 -> 2 -> 3 -> 7 -> NULL. Function Description C

View Solution →

Get Node Value

This challenge is part of a tutorial track by MyCodeSchool Given a pointer to the head of a linked list and a specific position, determine the data value at that position. Count backwards from the tail node. The tail is at postion 0, its parent is at 1 and so on. Example head refers to 3 -> 2 -> 1 -> 0 -> NULL positionFromTail = 2 Each of the data values matches its distance from the t

View Solution →

Delete duplicate-value nodes from a sorted linked list

This challenge is part of a tutorial track by MyCodeSchool You are given the pointer to the head node of a sorted linked list, where the data in the nodes is in ascending order. Delete nodes and return a sorted list with each distinct value in the original list. The given head pointer may be null indicating that the list is empty. Example head refers to the first node in the list 1 -> 2 -

View Solution →