Maximize the Number of Equivalent Pairs After Swaps - Google Top Interview Questions


Problem Statement :


You are given a list of integers of the same length A and B. 

You are also given a two-dimensional list of integers C where each element is of the form [i, j] which means that you can swap A[i] and A[j] as many times as you want.

Return the maximum number of pairs where A[i] = B[i] after the swapping.

Constraints

n ≤ 100,000 where n is the length of A and B

m ≤ 100,000 where m is the length of C

Example 1

Input

A = [1, 2, 3, 4]

B = [2, 1, 4, 3]

C = [

    [0, 1],

    [2, 3]

]

Output

4

Explanation

We can swap A[0] with A[1] then A[2] with A[3].



Solution :



title-img




                        Solution in C++ :

class UnionFind {
    private:
    vector<int> parents, rank;

    public:
    UnionFind(int n) {
        parents.resize(n);
        rank.resize(n);
        for (int i = 0; i < n; i++) {
            parents[i] = i;
            rank[i] = 1;
        }
    }

    int find(int node) {
        int root = node;

        while (root != parents[root]) {
            root = parents[root];
        }

        // Path compression
        while (node != root) {
            int temp = parents[node];
            parents[node] = root;
            node = temp;
        }

        return root;
    }

    void unify(int a, int b) {
        int rootA = find(a);
        int rootB = find(b);

        if (rootA == rootB) return;

        // Union by rank
        if (rank[rootA] > rank[rootB]) {
            parents[rootB] = rootA;
        } else if (rank[rootB] > rank[rootA]) {
            parents[rootA] = rootB;
        } else {
            parents[rootB] = rootA;
            rank[rootA]++;
        }
    }

    vector<int> get_parents_array() {
        return parents;
    }
};

// Time and Space: O(N)
int solve(vector<int>& A, vector<int>& B, vector<vector<int>>& C) {
    int n = A.size();
    UnionFind union_find(n);

    for (vector<int>& edge : C) {
        union_find.unify(edge[0], edge[1]);  // Do unions to form groups
    }

    vector<int> parents = union_find.get_parents_array();
    unordered_map<int, vector<int>> grp_map;

    for (int i = 0; i < n; i++) {
        int parent = union_find.find(i);
        grp_map[parent].push_back(i);  // Map parents to list of indices in their group
    }

    int count = 0;

    for (auto& grp : grp_map) {  // For each group
        vector<int>& indices = grp.second;
        unordered_map<int, int> value_map;

        for (int idx : indices) {  // Map values found
            value_map[A[idx]]++;
        }

        for (int idx : indices) {  // For same indices check how many matched values are found
            if (--value_map[B[idx]] >= 0) {
                count++;
            }
        }
    }

    return count;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    class DisjointSet {
        int node;
        DisjointSet parent;
        public DisjointSet(int val) {
            this.node = val;
            this.parent = this;
        }
    }

    private Map<Integer, DisjointSet> map = new HashMap();
    private Map<Integer, List<Integer>> swappableMap = new HashMap();
    public int solve(int[] A, int[] B, int[][] C) {
        int count = 0;
        if (A.length == 0 || B.length == 0)
            return 0;
        for (int i = 0; i < A.length; i++) map.put(i, new DisjointSet(i));

        for (int[] arr : C) {
            int idx1 = arr[0];
            int idx2 = arr[1];
            union(idx1, idx2);
        }

        for (int i = 0; i < A.length; i++) {
            DisjointSet set = map.get(i);
            DisjointSet par = find(set);
            swappableMap.computeIfAbsent(par.node, k -> new ArrayList()).add(i);
        }

        for (int key : swappableMap.keySet()) {
            List<Integer> list = swappableMap.get(key);

            Map<Integer, Integer> freq1 = new HashMap();
            Map<Integer, Integer> freq2 = new HashMap();

            for (int i = 0; i < list.size(); i++) {
                int idx = list.get(i);
                freq1.put(A[idx], freq1.getOrDefault(A[idx], 0) + 1);
                freq2.put(B[idx], freq2.getOrDefault(B[idx], 0) + 1);
            }
            for (int num : freq1.keySet()) {
                count += (Math.min(freq1.get(num), freq2.getOrDefault(num, 0)));
            }
        }
        return count;
    }

    private void union(int idx1, int idx2) {
        DisjointSet set1 = map.get(idx1);
        DisjointSet set2 = map.get(idx2);

        DisjointSet f1 = find(set1);
        DisjointSet f2 = find(set2);

        if (f1.node == f2.node)
            return;
        f1.parent = f2;
    }

    private DisjointSet find(DisjointSet set) {
        if (set.parent == set)
            return set;
        return set.parent = find(set.parent);
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, A, B, edges):
        N = len(A)
        graph = [[] for _ in range(N)]
        for u, v in edges:
            graph[u].append(v)
            graph[v].append(u)

        ans = 0
        seen = [False] * N
        for u in range(N):
            if not seen[u]:
                queue = [u]
                seen[u] = True
                for node in queue:
                    for nei in graph[node]:
                        if not seen[nei]:
                            queue.append(nei)
                            seen[nei] = True

                count = Counter(B[i] for i in queue)
                for i in queue:
                    if count[A[i]]:
                        count[A[i]] -= 1
                        ans += 1

        return ans
                    


View More Similar Problems

Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t

View Solution →

Counting On a Tree

Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n

View Solution →

Polynomial Division

Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie

View Solution →

Costly Intervals

Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the

View Solution →

The Strange Function

One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting

View Solution →

Self-Driving Bus

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever

View Solution →