# Maximize Rook Square Values - Google Top Interview Questions

### Problem Statement :

```You are given a two-dimensional list of integers board representing a chess board.

Return the maximum sum you can attain by placing two rooks in the board such that they can't attack each other.

The sum is made by adding the two numbers where the rooks are placed.

Constraints

2 ≤ n * m ≤ 200,000 where n and m are the number of rows and columns in board

Example 1

Input

board = [

[1, 9, 3, 1, 9],

[1, 1, 1, 1, 1],

[8, 1, 1, 1, 1]

]

Output

17

Explanation

We can take the 8 square and one of the 9 squares.```

### Solution :

```                        ```Solution in C++ :

int solve(vector<vector<int>>& board) {
int n = board.size(), m = board[0].size();
auto go = [&]() {
int t = 0;
vector<int> a(m);
for (int i = 0; i < n; ++i) {
if (i > 0) {
int x = 0;
for (int j = 1; j < m; ++j) {
x = max(x, a[j - 1]);
t = max(t, x + board[i][j]);
}
}
for (int j = 0; j < m; ++j) a[j] = max(a[j], board[i][j]);
}
return t;
};
int ret = 0;
for (int i = 0; i < 2; ++i) {
ret = max(ret, go());
reverse(board.begin(), board.end());
}
return ret;
}```
```

```                        ```Solution in Java :

import java.util.*;

class Solution {
public int solve(int[][] grid) {
final int R = grid.length, C = grid[0].length;
int[][] topleft = A(grid, R, C);
int[][] topright = B(grid, R, C);
int[][] bottomleft = C(grid, R, C);
int[][] bottomright = D(grid, R, C);
int res = Integer.MIN_VALUE;
for (int r = 0; r != R; r++) {
for (int c = 0; c != C; c++) {
int tmp = Integer.MIN_VALUE;
if (r != 0 && c != 0)
tmp = Math.max(tmp, topleft[r - 1][c - 1]);
if (r != 0 && c != C - 1)
tmp = Math.max(tmp, topright[r - 1][c + 1]);
if (r != R - 1 && c != 0)
tmp = Math.max(tmp, bottomleft[r + 1][c - 1]);
if (r != R - 1 && c != C - 1)
tmp = Math.max(tmp, bottomright[r + 1][c + 1]);

res = Math.max(res, tmp + grid[r][c]);
}
}
return res;
}

private int[][] A(int[][] grid, final int R, final int C) { // top left
int[][] res = new int[R][C];
res[0][0] = grid[0][0];
for (int r = 0; r != R; r++) {
if (r != 0)
res[r][0] = Math.max(res[r - 1][0], grid[r][0]);
for (int c = 1; c != C; c++) {
int tmp = grid[r][c];
if (r != 0)
tmp = Math.max(tmp, res[r - 1][c]);
if (c != 0)
tmp = Math.max(tmp, res[r][c - 1]);
res[r][c] = tmp;
}
}
return res;
}

private int[][] B(int[][] grid, final int R, final int C) { // top right
int[][] res = new int[R][C];
res[0][C - 1] = grid[0][C - 1];
for (int r = 0; r != R; r++) {
if (r != 0)
res[r][C - 1] = Math.max(res[r - 1][C - 1], grid[r][C - 1]);
for (int c = C - 2; c != -1; c--) {
int tmp = grid[r][c];
if (r != 0)
tmp = Math.max(tmp, res[r - 1][c]);
if (c != C - 1)
tmp = Math.max(tmp, res[r][c + 1]);
res[r][c] = tmp;
}
}
return res;
}

private int[][] C(int[][] grid, final int R, final int C) { // bottom left
int[][] res = new int[R][C];
res[R - 1][0] = grid[R - 1][0];
for (int r = R - 1; r != -1; r--) {
if (r != R - 1)
res[r][0] = Math.max(res[r + 1][0], grid[r][0]);
for (int c = 1; c != C; c++) {
int tmp = grid[r][c];
if (r != R - 1)
tmp = Math.max(tmp, res[r + 1][c]);
if (c != 0)
tmp = Math.max(tmp, res[r][c - 1]);
res[r][c] = tmp;
}
}
return res;
}

private int[][] D(int[][] grid, final int R, final int C) { // bottom right
int[][] res = new int[R][C];
res[R - 1][C - 1] = grid[R - 1][C - 1];
for (int r = R - 1; r != -1; r--) {
if (r != R - 1)
res[r][C - 1] = Math.max(res[r + 1][C - 1], grid[r][C - 1]);
for (int c = C - 2; c != -1; c--) {
int tmp = grid[r][c];
if (r != R - 1)
tmp = Math.max(tmp, res[r + 1][c]);
if (c != C - 1)
tmp = Math.max(tmp, res[r][c + 1]);
res[r][c] = tmp;
}
}
return res;
}
}```
```

```                        ```Solution in Python :

def solve(self, board):
board_vals = [(val, (r, c)) for r, row in enumerate(board) for c, val in enumerate(row)]
mx = max(board_vals)
mx2 = max(v for v in board_vals if v != mx)
mxs = [mx, mx2]

result = 0
for v, (r, c) in mxs:
for nv, (nr, nc) in board_vals:
if nr != r and c != nc:
result = max(result, v + nv)
return result```
```

## Truck Tour

Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump. Initially, you have a tank of infinite capacity carrying no petr

## Queries with Fixed Length

Consider an -integer sequence, . We perform a query on by using an integer, , to calculate the result of the following expression: In other words, if we let , then you need to calculate . Given and queries, return a list of answers to each query. Example The first query uses all of the subarrays of length : . The maxima of the subarrays are . The minimum of these is . The secon

## QHEAP1

This question is designed to help you get a better understanding of basic heap operations. You will be given queries of types: " 1 v " - Add an element to the heap. " 2 v " - Delete the element from the heap. "3" - Print the minimum of all the elements in the heap. NOTE: It is guaranteed that the element to be deleted will be there in the heap. Also, at any instant, only distinct element