Maximal Expression - Google Top Interview Questions
Problem Statement :
Given a list of integers nums, return the maximal value that can be made by adding any binary operators +, -, and * between the numbers in nums as well as insert any valid brackets. Constraints 1 ≤ n ≤ 200 where n is the length of nums Example 1 Input nums = [-5, -3, -8] Output 64 Explanation We can make the following expression: (-5 + -3) * -8
Solution :
Solution in C++ :
int solve(vector<int>& A) {
int N = A.size();
int t[N][N][2];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) t[i][j][0] = INT_MAX, t[i][j][1] = INT_MIN;
for (int i = 0; i < N; i++) t[i][i][0] = t[i][i][1] = A[i];
for (int L = 2; L <= N; L++)
for (int i = 0; i + L - 1 < N; i++) {
int j = i + L - 1;
for (int k = i; k < j; k++) {
int a = t[i][k][0];
int b = t[i][k][1];
int c = t[k + 1][j][0];
int d = t[k + 1][j][1];
vector<int> P = {a, b};
vector<int> Q = {c, d};
for (int m = 0; m < 2; m++)
for (int n = 0; n < 2; n++) {
t[i][j][0] = min(P[m] * Q[n], t[i][j][0]);
t[i][j][1] = max(P[m] * Q[n], t[i][j][1]);
t[i][j][0] = min(P[m] + Q[n], t[i][j][0]);
t[i][j][1] = max(P[m] + Q[n], t[i][j][1]);
t[i][j][0] = min(P[m] - Q[n], t[i][j][0]);
t[i][j][1] = max(P[m] - Q[n], t[i][j][1]);
}
}
}
return t[0][N - 1][1];
}
Solution in Java :
import java.util.*;
class Solution {
class Node {
int max;
int min;
public Node(int max, int min) {
this.max = max;
this.min = min;
}
}
public int solve(int[] nums) {
int len = nums.length;
Node[][] dp = new Node[len][len];
for (int i = len - 1; i >= 0; i--) {
for (int j = i; j < len; j++) {
dp[i][j] = new Node(Integer.MIN_VALUE, Integer.MAX_VALUE);
if (i == j) {
dp[i][j] = new Node(nums[i], nums[i]);
} else {
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int index = i; index < j; index++) {
max = Math.max(max, dp[i][index].max + dp[index + 1][j].max);
max = Math.max(max, dp[i][index].max - dp[index + 1][j].min);
max = Math.max(max,
Math.max(dp[i][index].max * dp[index + 1][j].max,
dp[i][index].min * dp[index + 1][j].min));
min = Math.min(min, dp[i][index].min + dp[index + 1][j].min);
min = Math.min(min, dp[i][index].min - dp[index + 1][j].max);
min = Math.min(min,
Math.min(dp[i][index].max * dp[index + 1][j].min,
dp[i][index].min * dp[index + 1][j].max));
}
dp[i][j] = new Node(max, min);
}
}
}
return dp[0][len - 1].max;
}
/**
HashMap<String, int[]> cache;
public int solve(int[] nums) {
int len = nums.length;
cache = new HashMap<>();
return process(nums, 0, len - 1)[0];
}
//[MAX, MIN]
public int[] process(int[] nums, int i, int j) {
//System.out.println("I" + i + "j" + j);
// if (i > j) {
// return new int[]{Integer.MIN_VALUE, Integer.MAX_VALUE};
// }
// if (i >= nums.length || j >= nums.length) {
// return new int[]{Integer.MIN_VALUE, Integer.MAX_VALUE};
// }
if (i == j) {
return new int[]{nums[i], nums[i]};
}
String key = i + "#" + j;
if (cache.containsKey(key)) {
return cache.get(key);
}
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int index = i; index < j; index++) {
int[] res1 = process(nums, i, index);
int[] res2 = process(nums, index + 1, j);
max = Math.max(max, res1[0] + res2[0]);
max = Math.max(max, res1[0] - res2[1]);
max = Math.max(max, Math.max(res1[0] * res2[0], res1[1] * res2[1]));
min = Math.min(min, res1[1] + res2[1]);
min = Math.min(min, res1[1] - res2[0]);
min = Math.min(min, Math.min(res1[0] * res2[1], res1[1] * res2[0]));
}
int[] res = new int[]{max, min};
cache.put(key, res);
return res;
}
*/
}
Solution in Python :
class Solution:
def solve(self, nums):
@cache
def dp(i, j):
if i == j:
return nums[i], nums[i]
elif i + 1 == j:
return max(nums[i] * nums[j], nums[i] + nums[j], nums[i] - nums[j]), min(
nums[i] * nums[j], nums[i] + nums[j], nums[i] - nums[j]
)
else:
maxx = -1e9
minn = -maxx
for k in range(i, j):
a, b = dp(i, k)
c, d = dp(k + 1, j)
maxx = max(maxx, a * c, b * d, a + c, a - d)
minn = min(minn, a * d, b * c, b + d, b - c)
return maxx, minn
a, b = dp(0, len(nums) - 1)
return a
View More Similar Problems
Tree: Height of a Binary Tree
The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary
View Solution →Tree : Top View
Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.
View Solution →Tree: Level Order Traversal
Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F
View Solution →Binary Search Tree : Insertion
You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <
View Solution →Tree: Huffman Decoding
Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t
View Solution →Binary Search Tree : Lowest Common Ancestor
You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b
View Solution →