Maximal Expression - Google Top Interview Questions
Problem Statement :
Given a list of integers nums, return the maximal value that can be made by adding any binary operators +, -, and * between the numbers in nums as well as insert any valid brackets. Constraints 1 ≤ n ≤ 200 where n is the length of nums Example 1 Input nums = [-5, -3, -8] Output 64 Explanation We can make the following expression: (-5 + -3) * -8
Solution :
Solution in C++ :
int solve(vector<int>& A) {
int N = A.size();
int t[N][N][2];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) t[i][j][0] = INT_MAX, t[i][j][1] = INT_MIN;
for (int i = 0; i < N; i++) t[i][i][0] = t[i][i][1] = A[i];
for (int L = 2; L <= N; L++)
for (int i = 0; i + L - 1 < N; i++) {
int j = i + L - 1;
for (int k = i; k < j; k++) {
int a = t[i][k][0];
int b = t[i][k][1];
int c = t[k + 1][j][0];
int d = t[k + 1][j][1];
vector<int> P = {a, b};
vector<int> Q = {c, d};
for (int m = 0; m < 2; m++)
for (int n = 0; n < 2; n++) {
t[i][j][0] = min(P[m] * Q[n], t[i][j][0]);
t[i][j][1] = max(P[m] * Q[n], t[i][j][1]);
t[i][j][0] = min(P[m] + Q[n], t[i][j][0]);
t[i][j][1] = max(P[m] + Q[n], t[i][j][1]);
t[i][j][0] = min(P[m] - Q[n], t[i][j][0]);
t[i][j][1] = max(P[m] - Q[n], t[i][j][1]);
}
}
}
return t[0][N - 1][1];
}
Solution in Java :
import java.util.*;
class Solution {
class Node {
int max;
int min;
public Node(int max, int min) {
this.max = max;
this.min = min;
}
}
public int solve(int[] nums) {
int len = nums.length;
Node[][] dp = new Node[len][len];
for (int i = len - 1; i >= 0; i--) {
for (int j = i; j < len; j++) {
dp[i][j] = new Node(Integer.MIN_VALUE, Integer.MAX_VALUE);
if (i == j) {
dp[i][j] = new Node(nums[i], nums[i]);
} else {
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int index = i; index < j; index++) {
max = Math.max(max, dp[i][index].max + dp[index + 1][j].max);
max = Math.max(max, dp[i][index].max - dp[index + 1][j].min);
max = Math.max(max,
Math.max(dp[i][index].max * dp[index + 1][j].max,
dp[i][index].min * dp[index + 1][j].min));
min = Math.min(min, dp[i][index].min + dp[index + 1][j].min);
min = Math.min(min, dp[i][index].min - dp[index + 1][j].max);
min = Math.min(min,
Math.min(dp[i][index].max * dp[index + 1][j].min,
dp[i][index].min * dp[index + 1][j].max));
}
dp[i][j] = new Node(max, min);
}
}
}
return dp[0][len - 1].max;
}
/**
HashMap<String, int[]> cache;
public int solve(int[] nums) {
int len = nums.length;
cache = new HashMap<>();
return process(nums, 0, len - 1)[0];
}
//[MAX, MIN]
public int[] process(int[] nums, int i, int j) {
//System.out.println("I" + i + "j" + j);
// if (i > j) {
// return new int[]{Integer.MIN_VALUE, Integer.MAX_VALUE};
// }
// if (i >= nums.length || j >= nums.length) {
// return new int[]{Integer.MIN_VALUE, Integer.MAX_VALUE};
// }
if (i == j) {
return new int[]{nums[i], nums[i]};
}
String key = i + "#" + j;
if (cache.containsKey(key)) {
return cache.get(key);
}
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int index = i; index < j; index++) {
int[] res1 = process(nums, i, index);
int[] res2 = process(nums, index + 1, j);
max = Math.max(max, res1[0] + res2[0]);
max = Math.max(max, res1[0] - res2[1]);
max = Math.max(max, Math.max(res1[0] * res2[0], res1[1] * res2[1]));
min = Math.min(min, res1[1] + res2[1]);
min = Math.min(min, res1[1] - res2[0]);
min = Math.min(min, Math.min(res1[0] * res2[1], res1[1] * res2[0]));
}
int[] res = new int[]{max, min};
cache.put(key, res);
return res;
}
*/
}
Solution in Python :
class Solution:
def solve(self, nums):
@cache
def dp(i, j):
if i == j:
return nums[i], nums[i]
elif i + 1 == j:
return max(nums[i] * nums[j], nums[i] + nums[j], nums[i] - nums[j]), min(
nums[i] * nums[j], nums[i] + nums[j], nums[i] - nums[j]
)
else:
maxx = -1e9
minn = -maxx
for k in range(i, j):
a, b = dp(i, k)
c, d = dp(k + 1, j)
maxx = max(maxx, a * c, b * d, a + c, a - d)
minn = min(minn, a * d, b * c, b + d, b - c)
return maxx, minn
a, b = dp(0, len(nums) - 1)
return a
View More Similar Problems
Palindromic Subsets
Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t
View Solution →Counting On a Tree
Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n
View Solution →Polynomial Division
Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie
View Solution →Costly Intervals
Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the
View Solution →The Strange Function
One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting
View Solution →Self-Driving Bus
Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever
View Solution →