Library Query


Problem Statement :


A giant library has just been inaugurated this week. It can be modeled as a sequence of N consecutive shelves with each shelf having some number of books. Now, being the geek that you are, you thought of the following two queries which can be performed on these shelves.

Change the number of books in one of the shelves.

Obtain the number of books on the shelf having the kth rank within the range of shelves.

A shelf is said to have the kth rank if its position is k when the shelves are sorted based on the number of the books they contain, in ascending order.

Can you write a program to simulate the above queries?

Input Format

The first line contains a single integer T, denoting the number of test cases.
The first line of each test case contains an integer N denoting the number of shelves in the library.
The next line contains N space separated integers where the ith integer represents the number of books on the ith shelf where 1<=i<=N.

The next line contains an integer Q denoting the number of queries to be performed. Q lines follow with each line representing a query.
Queries can be of two types:

1 x k - Update the number of books in the xth shelf to k (1 <= x <= N).
0 x y k - Find the number of books on the shelf between the shelves x and y (both inclusive) with the kth rank (1 <= x <= y <= N, 1 <= k <= y-x+1).



Output Format

For every test case, output the results of the queries in a new line.


Constraints

1 <= T <= 5
1 <= N <= 104
1 <= Q <= 104
The number of books on each shelf is always guaranteed to be between 1 and 1000.



Solution :



title-img


                            Solution in C :

In   C++ :







#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <fstream>
#include <set>
#include <map>
#include <cmath>
#pragma comment(linker,"/STACK:16777216")
#define MAXN 100100

using namespace std;

string s1,s2;

int n,k,a[MAXN],x,q,l,r,cnt[1001],t;

int main()
{
    cin>>t;

    while(t--){
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        scanf("%d",&q);
        for(int i=0;i<q;i++)
        {
            scanf("%d",&x);
            if(x==1){
                scanf("%d %d",&l,&k);
                a[l]=k;
            }
            else
            {
                scanf("%d %d %d",&l,&r,&k);
                for(int j=1;j<1001;j++)
                    cnt[j]=0;

                for(int i=l;i<=r;i++)
                    cnt[a[i]]++;

                for(int j=1;j<1001;j++)
                    if(cnt[j]>=k)
                    {
                        printf("%d\n",j);
                        break;
                    }
                    else
                        k-=cnt[j];
            }
        }
    }

    return 0;
}








In   Java :









import java.io.*;
import java.util.*;
import java.math.*;

public class Solution
{
    public static long MOD = 1000000007L;
    public static void main(String[] args) 
    {
        Scan scan = new Scan(System.in);
        PrintWriter out = new PrintWriter(System.out);
                
        int tc = scan.nextInt();
        for (int t = 0; t < tc; t++)
        {
            int N = scan.nextInt();
            
            int[] arr = new int[N];
            for (int i = 0; i < N; i++)
                arr[i] = scan.nextInt();
            
            int Q = scan.nextInt();
            for (int q = 0; q < Q; q++)
            {
                int op = scan.nextInt();
                if (op == 1)
                {
                    int x = scan.nextInt() - 1;
                    int k = scan.nextInt();
                    arr[x] = k;
                }
                else
                {
                    int x = scan.nextInt() - 1;
                    int y = scan.nextInt() - 1;
                    int k = scan.nextInt();
                    
                    int i;
                    int[] temp = new int[1001];
                    for (i = x; i <= y; i++)
                        temp[arr[i]]++;
                    
                    for (i = 0; i < 1001 ; i++)
                    {
                        k -= temp[i];                        
                        if (k <= 0) break;
                    }
                    out.println(i);
                }
            }                            
        }
        out.close();        
    }    
}

final class Scan
{
    private InputStream in = null;
    private int pos,count;
    private byte[] buf = new byte[1<<16];
    
    public Scan(InputStream in)
    {
        this.in = in;
        pos = 0;
        count = 0;
    }
    public int nextInt()
    {
        int c=read(), sign = 1;
        while (c <= ' ')
            c = read();
        if (c == '-')
        {
            sign = -1;
            c = read();
        }
        int n = c - '0';
        while((c = read() - '0') >= 0)
            n = n * 10 + c;
        return n * sign;        
    }    
public String next()
{
StringBuilder sb = new StringBuilder();
int c = read();
while (c <= ' ')
c = read();
while (c >= 33)
{
sb.append((char) c );
c = read();
}
return sb.toString();
}
public long nextLong()
{
int c = read(), sign = 1;
while (c <= ' ')
c = read();
if (c == '-')
{
sign = -1;
c = read();
}        
long n = 1L * (c - '0');
while((c = read() - '0') >= 0)
n = n * 10 + c;
return n * sign;        
}
public int read()
{
if( pos == count)
fillBuffer();

return buf[pos++];        
}
private void fillBuffer()
{
try
{
count = in.read(buf, pos = 0 , buf.length);
if (count == -1)
buf[0] = -1;
}
catch(Exception e)
{

}
}
}









In    C  :







#include<stdio.h>
struct node{
int v,i;
};
struct node a[10005],temp;

int part(int lo,int hi)
{int i=lo,j=hi,pivot=a[(i+j)/2].v;
while (i<=j)
   {while (a[i].v<pivot) i++;
    while (a[j].v>pivot) j--;
    if (i<=j)
    {temp=a[j]; a[j]=a[i]; a[i]=temp; i++; j--;}


   }
   return i;
}
void sort(int lo,int hi)
{int x=part(lo,hi);
 if (lo<x-1) sort(lo,x-1);
 if (x<hi) sort(x,hi);
}

int main(){
int t,k,i,j,n,q,x,y,f,l,count;
scanf("%d",&t);
while(t--){
 scanf("%d",&n);
 for(j=1;j<=n;j++){
  scanf("%d",&a[j].v);
  a[j].i=j;
 }
 sort(1,n);/*
 for(j=1;j<=n;j++){
    printf("%d %d\n",a[j].v,a[j].i);
  }
 printf("\n");*/
 scanf("%d",&q);
 while(q--){
    scanf("%d",&f);
    if(f==0){
         scanf("%d%d%d",&x,&y,&k);
         count=0;
         for(j=1;count!=k;j++){
                  if( x <=a[j].i && a[j].i<=y )  count++;
            }
          printf("%d\n",a[j-1].v);
       }
    else{
       scanf("%d%d",&l,&k);
       for(j=1;j<=n;j++){
           if(a[j].i == l){
               a[j].v=k;
             }
        temp=a[j];
        while(temp.v<a[j-1].v && j>0){
                                   a[j]=a[j-1];
                                      j--;
                                  }
            a[j]=temp;
        while(temp.v>a[j+1].v && j<n){
                                    a[j]=a[j+1];
                                      j++;
                                  }
            a[j]=temp;


        }/*
         for(j=1;j<=n;j++){
      printf("%d %d\n",a[j].v,a[j].i);
      }
      printf("\n");*/

     }

  }
}
return 0;
}









In   Python3 :







class FenwickTree2D:
    def __init__(self, x,y):
        self.size_x = x
        self.size_y = y
        self.data = [[0]*self.size_y for _ in range(self.size_x)]
 
    def sum(self, x1, y1):
        if min(x1,y1) <= 0: return 0
        s = 0
        x = x1
        while x >= 0:
            y = y1
            while y >= 0:
                s += self.data[x][y]
                y = (y & (y+1)) - 1
            x = (x & (x+1)) - 1
        return s

    def sumrange(self, x1, y1, x2, y2): 
        return self.sum(x2, y2) \
               - self.sum(x1-1, y2) - self.sum(x2, y1-1) \
               + self.sum(x1-1,y1-1)

    def add(self, x1, y1, w):
        assert min(x1,y1) > 0
        x = x1
        while x < self.size_x:
            y = y1
            while y < self.size_y:
                self.data[x][y] += w
                y |= y + 1
            x |= x + 1

for t in range(int(input())):
    N = int(input())
    arr = list(map(int,input().split()))
    t = FenwickTree2D(10001,1001)
    for i in range(len(arr)):
        t.add(i+1,arr[i],1)
    Q = int(input())
    for q in range(Q):
        c = list(map(int,input().split()))
        if c[0]==1:
            t.add(c[1],arr[c[1]-1],-1)
            arr[c[1]-1] = c[2]
            t.add(c[1],arr[c[1]-1],1)
        else:
            def select(l,r,k):
                lo,hi=1,1000
                while lo < hi:
                    med = (hi+lo)//2
                    a = t.sumrange(l,0,r,med)
                    if a>=k:
                        hi = med
                    else:
                        lo = med+1

                if not t.sumrange(l,0,r,lo) >= k:
                    raise ValueError
                return lo
            print(select(c[1],c[2],c[3]))
                        








View More Similar Problems

Jenny's Subtrees

Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .

View Solution →

Tree Coordinates

We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For

View Solution →

Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →

Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ

View Solution →

Array and simple queries

Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty

View Solution →

Median Updates

The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o

View Solution →