Iterate It
Problem Statement :
Consider the following pseudocode, run on an array of length : rep := 0 while A not empty: B := [] for x in A, y in A: if x != y: append absolute_value(x - y) to B A := B rep := rep + 1 Given the values of and array , compute and print the final value of after the pseudocode above terminates; if the loop will never terminate, print -1 instead. Input Format The first line contains a single integer, , denoting the length of array . The second line contains space-separated integers describing the respective values of . Output Format Print the final value of after the pseudocode terminates; if the loop will never terminate, print -1 instead.
Solution :
Solution in C :
In C :
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
typedef unsigned int uint;
#define MAX_N 100000
#define MAX_VALUE 50000
uint a[MAX_N];
bool b[MAX_VALUE+1];
int main() {
// read input
uint n;
scanf("%u", &n);
assert(n <= MAX_N);
for (int i = 0; i < n; i++) {
uint v;
scanf("%u", &v);
assert(v);
assert(v <= MAX_VALUE);
b[v] = true;
}
// start grinding
uint rep = 0;
while (true) {
// transfer from b (presence array) back to a (sorted list)
uint stride = 0;
bool in_stride = true;
n = 0;
for (uint i = 1; i <= MAX_VALUE; i++) {
if (b[i]) {
b[i] = false;
if (!n) {
stride = i;
} else if (in_stride && i - a[n-1] != stride) {
in_stride = false;
}
a[n++] = i;
}
}
if (!n) {
break;
}
if (in_stride) {
// shortcut
assert(a[n-1]/stride == n);
rep += n;
break;
}
rep++;
for (uint ai = 0; ai < n-1; ai++) {
for (uint aj = ai+1; aj < n; aj++) {
// no unnecessary code here, performance-critical
b[a[aj] - a[ai]] = true;
}
}
}
printf("%u\n", rep);
return 0;
}
Solution in C++ :
In C ++ :
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <sstream>
#include <cmath>
#include <ctime>
#include <bitset>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<string> vs;
typedef vector< vector<int> > vvi;
typedef vector<ll> vl;
typedef vector< vector<ll> > vvl;
#define forn(i, n) for (int i = 0; i < (int)(n); i++)
#define forv(i, v) forn(i, v.size())
#define all(v) v.begin(), v.end()
#define mp make_pair
#define pb push_back
const int N = 50005;
typedef bitset<N> mask;
int gcd(int x, int y) {
if (!y) return x;
return gcd(y, x % y);
}
int main() {
#ifdef NEREVAR_PROJECT
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
int n; cin >> n;
vi a(n);
forn(i, n) {
scanf("%d", &a[i]);
}
sort(all(a));
a.erase(unique(all(a)), a.end());
n = (int)a.size();
mask diffs;
mask present;
for (int i = n - 1; i >= 0; i--) {
diffs |= present >> a[i];
present.set(a[i]);
}
vi s;
forn(i, N) {
if (diffs.test(i)) {
s.pb(i);
}
}
if (s.empty()) {
cout << 1 << endl;
return 0;
}
int g = 0;
forv(i, s) g = gcd(g, s[i]);
forv(i, s) s[i] /= g;
diffs.reset();
present.reset();
for (int i = (int)s.size() - 1; i >= 0; i--) {
diffs |= present >> (s[i] + 1);
present.set(s[i]);
}
int steps = 2, m = s.back() - s[0];
while (m && !diffs.test(0)) {
mask next;
int mNext = m;
forn(i, m) {
if (diffs.test(i)) {
if (mNext == m) {
mNext = m - i - 1;
}
next |= diffs >> (i + 1);
}
}
m = mNext;
steps++;
diffs = next;
}
cout << steps + m << endl;
return 0;
}
Solution in Java :
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
private static final int l = 60000;
private static int gcd(int a, int b){
if (a < b) return gcd(b, a);
if (b == 0) return a;
return gcd(b, a % b);
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
boolean[] list = new boolean[l+1];
Set<Integer> set = new HashSet<Integer>();
for (int i = 0; i < n; i++){
int a = in.nextInt();
set.add(a);
list[a] = true;
}
boolean[] nList = new boolean[l+1];
for (int e : set){
for (int i = 1; i + e < l; i++){
nList[i] |= list[i + e];
/*
if (i < 10){
if ((list[i + e / b] >> (e % b)) > 0 || (list[i + e / b + 1] << (b - (e % b))) > 0){
System.out.println(bits(list[i + e / b] >> (e % b)));
System.out.println(bits(list[i + e / b + 1] << (b - (e % b))));
}
else{
System.out.println(bits(list[i + e / b]) + " " + (e % b));
System.out.println(bits(list[i + e / b + 1]) + " " + (b - (e % b)));
}
System.out.println(e + " " + i);
}*/
}
}
list = nList;
int g = 0;
int min = -1;
int max = 0;
//for (int a : set)
//System.out.println(a);
//System.out.println("-----");
set.clear();
for (int i = 0; i < l+1; i++){
if (list[i]){
//System.out.println(a);
set.add(i);
if (min < 0) min = i;
max = i;
g = gcd(i, g);
}
}
//System.out.println("-----");
//System.out.println(min);
//System.out.println(max);
//System.out.println(g);
int o = 1;
if (set.size() == 0){
System.out.println(o);
return;
}
Set<Integer> nSet = new HashSet<Integer>();
for (int a : set)
nSet.add(a / g);
set = nSet;
min /= g;
max /= g;
list = new boolean[l+1];
for (int a : set)
list[a] = true;
while (min > 1){
nList = new boolean[l+1];
for (int a = min; a <= max; a++){
if (list[a]){
for (int k = 1; k + a < l; k++){
nList[k] |= list[k + a];
}
}
}
list = nList;
max -= min;
for (int a = 1; a <= max; a++){
if (list[a]){
min = a;
break;
}
}
o++;
}
System.out.println(o + max);
}
/*
private static String bits(int i){
String s = "";
for (int j = b-1; j >= 0; j--)
s += (i & (1 << j)) > 0 ? 1 : 0;
return s;
}*/
}//[]{}
Solution in Python :
In Python3 :
input()
A = set([int(m) for m in input().strip().split()])
def DeltaBasis2(AList,P=False):
if type(AList) == set:
AList = sorted(list(AList))
if len(AList) == 1:
return 1
Count = 0
while len(AList)>0:
if len(AList) == 1:
return Count + 1
LCM = True
for i1 in AList[1:]:
if i1 % AList[0] != 0:
LCM = False
break
if LCM:
AList = [int(m/AList[0]) for m in AList]
if (AList[0] == 1 and AList[1] == 2):
return Count + AList[-1]
Delta = set()
if len(AList) < 100:
MaxWidth = len(AList) - 1
else:
MaxWidth = int(len(AList)**0.75//1)
for W in range(1,MaxWidth+1):
for i1 in range(len(AList)-W):
Delta.add(abs(AList[i1+W]-AList[i1]))
Delta = sorted(list(Delta))
AList = sorted(list(set([m for m in Delta] + [AList[-1] - m for m in AList[:-1]])))
if P:
print(AList2)
Count += 1
return Count
print(DeltaBasis2(A))
View More Similar Problems
Jim and the Skyscrapers
Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space
View Solution →Palindromic Subsets
Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t
View Solution →Counting On a Tree
Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n
View Solution →Polynomial Division
Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie
View Solution →Costly Intervals
Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the
View Solution →The Strange Function
One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting
View Solution →