Insert a node at a specific position in a linked list


Problem Statement :


Given the pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position and return the head node.

A position of 0 indicates head, a position of 1 indicates one node away from the head and so on. The head pointer given may be null meaning that the initial list is empty.

Example
 head refers to the first node in the list 1->2->3 
 data=4.
 position=2


Insert a node at position 2 with data=4. The new list is 1->2->4->3


Function Description Complete the function insertNodeAtPosition in the editor below. It must return a reference to the head node of your finished list.

insertNodeAtPosition has the following parameters:
      1. head: a SinglyLinkedListNode pointer to the head of the list
      2. data: an integer value to insert as data in your new node
      3. position: an integer position to insert the new node, zero based indexing

Returns:
      1. SinglyLinkedListNode pointer: a reference to the head of the revised list


Input Format:

The first line contains an integer n, the number of elements in the linked list.
Each of the next n lines contains an integer SinglyLinkedListNode[i].data.
The next line contains an integer dta, the data of the node that is to be inserted.
The last line contains an integer position.


Constraints:
     1.  1<=n<=1000
     2.  1<=Singly_LinkedListNode[i].data<1000
     3.  0<=position<=n



Solution :



title-img


                            Solution in C :

in C:

//The following function is all you need to complete the challenge in 
//hackerrank platform

SinglyLinkedListNode* insertNodeAtPosition(SinglyLinkedListNode* llist, int data, int position) {
    //iterate to the correct position in the linked list
    if((position-1)>0){
        insertNodeAtPosition(llist->next, data, position-1);
    }
    else{
        SinglyLinkedListNode* newnode = create_singly_linked_list_node(data);
        newnode->next = llist->next;
        llist->next = newnode;
    }
    return llist;
}
                        


                        Solution in C++ :

In C++:

//the following function is all that is needed to complete
//the challenge in hackerrank platform

Node* InsertNth(Node *head, int data, int position)
{
    if(position == 0){
        Node* a = (Node*)malloc(sizeof(Node));
        a->data = data;
        a->next = head;
        return a;
    }else{
        int i;
        Node* a = head;
        for(i = 1; i < position; i++)
            a = a->next;
        Node* tmp = (Node*)malloc(sizeof(Node));
        tmp->data = data;
        tmp->next = a->next;
        a->next = tmp;
        return head;
    }
}
                    


                        Solution in Java :

In Java:

//the following method is all that is needed to complete the 
//challenge in hackerrank platform

static SinglyLinkedListNode insertNodeAtPosition(SinglyLinkedListNode llist, int data, int position) {
     SinglyLinkedListNode node = new SinglyLinkedListNode(data);
        if(position==0){
            node.next = llist.next;
            llist=node;
        }else{
            SinglyLinkedListNode aux = new SinglyLinkedListNode(0);
            aux.next = llist;
            for(int i=0;i<position;i++)aux=aux.next;
            node.next = aux.next;
            aux.next=node;
        }

    return llist;


    }
                    


                        Solution in Python : 
                            
In Python 3:

# the following method is all that is need to complete
# the challenge in hackerrank platform.

def InsertNth(head, data, position):
    i = 0
    newNode = Node(data, None)
    if position is 0:
        newNode.next = head
        head = newNode
        return head
    curr = head
    while i is not position - 1:
        curr = curr.next
        i+= 1
    prev = curr
    next = curr.next
    prev.next = newNode
    newNode.next = next
    return head
                    


View More Similar Problems

Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

View Solution →

Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do

View Solution →

Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

View Solution →

Kindergarten Adventures

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

View Solution →

Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

View Solution →

Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

View Solution →