**Functions C++**

### Problem Statement :

Functions are a bunch of statements glued together. A function is provided with zero or more arguments, and it executes the statements on it. Based on the return type, it either returns nothing (void) or something. The syntax for a function is return_type function_name(arg_type_1 arg_1, arg_type_2 arg_2, ...) { ... ... ... [if return_type is non void] return something of type `return_type`; } For example, a function to return the sum of four parameters can be written as int sum_of_four(int a, int b, int c, int d) { int sum = 0; sum += a; sum += b; sum += c; sum += d; return sum; } Write a function int max_of_four(int a, int b, int c, int d) which returns the maximum of the four arguments it receives. += : Add and assignment operator. It adds the right operand to the left operand and assigns the result to the left operand. a += b is equivalent to a = a + b; Input Format Input will contain four integers -a, b, c, d, one per line. Output Format Return the greatest of the four integers. PS: I/O will be automatically handled.

### Solution :

` ````
Solution in C :
#include <iostream>
#include <cstdio>
using namespace std;
int max_of_four(int a, int b, int c, int d){
return max(max(a, b), max(c,d));
}
int main() {
int a, b, c, d;
scanf("%d %d %d %d", &a, &b, &c, &d);
int ans = max_of_four(a, b, c, d);
printf("%d", ans);
return 0;
}
```

## View More Similar Problems

## Array-DS

An array is a type of data structure that stores elements of the same type in a contiguous block of memory. In an array, A, of size N, each memory location has some unique index, i (where 0<=i<N), that can be referenced as A[i] or Ai. Reverse an array of integers. Note: If you've already solved our C++ domain's Arrays Introduction challenge, you may want to skip this. Example: A=[1,2,3

View Solution →## 2D Array-DS

Given a 6*6 2D Array, arr: 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 An hourglass in A is a subset of values with indices falling in this pattern in arr's graphical representation: a b c d e f g There are 16 hourglasses in arr. An hourglass sum is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in arr, then print t

View Solution →## Dynamic Array

Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.

View Solution →## Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

View Solution →## Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →## Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →