Find the Seed


Problem Statement :


A company needs random numbers for its operation. N random numbers have been generated using  N numbers as seeds and the following recurrence formula:

The numbers used as seeds are F(N-1),F(N-2),...,F(1),F(0). F(K) is the Kth term of the recurrence.

Due to a failure on the servers, the company lost its seed numbers. Now they just have the recurrence formula and the previously generated N random numbers.

The company wants to recover the numbers used as seeds, so they have hired you for doing this task.

Input Format

The first line contains two space-separated integers, N and K, respectively.
The second line contains the space-separated integers describing   F(K),F(K-1),...,F(K-N+2),F(K-N+1). F(K)(all these numbers are non-negative integers < 10^9).
The third line contains the space-separated coefficients of the recurrence formula, C(1),C(2),...,C(N-1),C(N). All of these coefficients are positive integers <10^9.

Constraints

1 <= N <= 50
1 <= K <=10^9
0 <= K-N+1



Solution :



title-img


                            Solution in C :

In C++ :





#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

typedef long long ll;

ll MOD = 1000000007;
ll powe(ll a, ll b) {
    if (b == 0) return 1;
    if (b % 2 == 0) return powe( (a*a)%MOD, b/2);
    return (a*powe(a, b-1)) % MOD;
}

ll inv(ll a) {
    return powe(a, MOD-2);
}

struct matrix {
    vector<vector<ll>> M;
    matrix I() const {
        matrix ans;
        ans.M = M;
        for (int i = 0; i < M.size(); ++i)
            for (int j = 0; j < M.size(); ++j)
            ans.M[i][j] = !!(i==j);
        return ans;
    }
    matrix operator*(const matrix& rhs) const {
        matrix ans;
        ans.M = M;
        int N = M.size();
        for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) {
            ans.M[i][j] = 0;
            for (int k = 0; k < N; ++k)
                ans.M[i][j] = (ans.M[i][j] + M[i][k]*rhs.M[k][j]) % MOD;
        }
        return ans;
    }
};

matrix powm(const matrix& M, int b) {
    if (b == 0) return M.I();
    if (b % 2 == 0) return powm( M*M, b/2);
    return M*powm(M, b-1);
}

int main() {
    ll N, K;
    cin >> N >> K;
    vector<ll> F(N);
    for (ll &x : F) cin >> x;
    vector<ll> C(N);
    for (ll &x : C) cin >> x;
    matrix M;
    M.M = vector<vector<ll>>(N, vector<ll>(N));
    for (int i = 0; i < N-1; ++i)
        for (int j = 0; j < N; ++j)
            M.M[i][j] = !!((i+1) == j);
    ll cinv = inv(C.back());
    M.M[N-1][0] = cinv;
    for (int j = 1; j < N; ++j)
        M.M[N-1][j] = ((MOD - C[j-1])*cinv)%MOD;
    auto M2 = powm(M, K-N+1);
    vector<ll> ans(N);
    for (int i = 0; i < N; ++i) {
        ans[i] = 0;
        for (int j = 0; j < N; ++j)
            ans[i] = (ans[i] + F[j]*M2.M[i][j]) % MOD;
    }
    for (int i = 0; i < N; ++i) {
        if (i) printf(" ");
        printf("%lld", ans[i]);
    }
    printf("\n");
    return 0;
}








In Java :





import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

    static final int Q = 1000000007;

    /** Assume 1 <= a < M and (a, M) = 1.  Return b such that 1 <= b < M and a*b = 1(mod M). */
    static int inv(int a, int M) {
        //assert a >= 1 && a < M;
        int t = 0;
        int r = M;
        int newt = 1;
        int newr = (int) a;
        while (newr != 0) {
            int q = r / newr;
            int temp = t - q * newt;
            t = newt;
            newt = temp;
            temp = r - q * newr;
            r = newr;
            newr = temp;
        }
        int result = (t < 0) ? t + M : t;
        //assert (a * result) % M == 1 && result >= 1 && result < M;
        return result;
    }

    static long[][] multiply(long[][] m1, long[][] m2) {
        int N = m1.length;
        long[][] m3 = new long[N][N];
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                for (int k = 0; k < N; k++) {
                    m3[i][j] = (m3[i][j] + ((m1[i][k] * m2[k][j]) % Q)) % Q;
                }
            }
        }
        return m3;
    }

    /** Assume b >= 1 and each a[i][j] * (Q - 1) is in long range. */
    static long[][] pow(long[][] a, long b) {
        if (b == 1L) {
            return a;
        }
        long[][] half = pow(a, b / 2);
        long[][] almost = multiply(half, half);
        return (b % 2 == 0) ? almost : multiply(almost, a);
    }
    
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        long k = in.nextLong();
        long[] f = new long[n];
        int i;
        for (i = 0; i < n; i++) {
            f[i] = in.nextLong();
        }
        int[] c = new int[n];
        for (i = 0; i < n; i++) {
            c[i] = in.nextInt();
        }

        StringBuilder builder = new StringBuilder();
        if (k - n + 1 == 0L) {
            for (i = 0; i < n; i++) {
                if (i != 0) {
                    builder.append(' ');
                }
                builder.append(f[i]);
            }
        }
        else {
            long[][] mat = new long[n][n];
            for (i = 0; i < n - 1; i++) {
                mat[i + 1][i] = 1L;
            }
            mat[0][n - 1] = (long) inv(c[n - 1], Q);
            for (i = 1; i < n; i++) {
                mat[i][n - 1] = (Q - ((c[i - 1] * mat[0][n - 1]) % Q)) % Q;
            }
            long[][] power = pow(mat, k - n + 1);
            int j;
            long a;
            for (i = 0; i < n; i++) {
                a = 0L;
                for (j = 0; j < n; j++) {
                    a = (a + f[j] * power[j][i]) % Q;
                }
                if (i != 0) {
                    builder.append(' ');
                }
                builder.append(a);
            }
        }
        System.out.println(builder);
    }
}








In C :





#include <stdio.h>
#include <stdlib.h>
#define MOD 1000000007
long long modInverse(long long a,long long mod);
void one(long long*a,int SIZE);
void mul(long long*a,long long*b,int SIZE);
void powm(long long*a,int n,long long*res,int SIZE);
int F[50],C[50];
long long a[50][50],ans[50][50],A[50];

int main(){
  int N,K,i,j;
  scanf("%d%d",&N,&K);
  for(i=0;i<N;i++)
    scanf("%d",F+i);
  for(i=0;i<N;i++)
    scanf("%d",C+i);
  for(i=0;i<N-1;i++)
    for(j=0;j<N;j++)
      if(i==j-1)
        a[i][j]=1;
      else
        a[i][j]=0;
  a[N-1][0]=modInverse(C[N-1],MOD);
  for(i=1;i<N;i++)
    a[N-1][i]=(MOD-C[i-1])*a[N-1][0]%MOD;
  powm(&a[0][0],K-N+1,&ans[0][0],50);
  for(i=0;i<N;i++)
    for(j=0,A[i]=0;j<N;j++)
      A[i]=(A[i]+F[j]*ans[i][j])%MOD;
  for(i=0;i<N;i++)
    printf("%lld ",A[i]);
  return 0;
}
long long modInverse(long long a,long long mod){
	long long b0 = mod, t, q;
	long long x0 = 0, x1 = 1;
	while (a > 1) {
		q = a / mod;
		t = mod; mod = a % mod; a = t;
		t = x0; x0 = x1 - q * x0; x1 = t;
	}
	if (x1 < 0) x1 += b0;
	return x1;
}
void one(long long*a,int SIZE){
    int i,j;
    for (i = 0; i < SIZE; i++)
        for (j = 0; j < SIZE; j++)
            a[i*SIZE+j] = (i == j);
    return;
}
void mul(long long*a,long long*b,int SIZE){
    int i,j,k;
    long long res[SIZE][SIZE];
    for(i=0;i<SIZE;i++)
      for(j=0;j<SIZE;j++)
        res[i][j]=0;
    for (i = 0; i < SIZE; i++)
        for (j = 0; j < SIZE; j++)
            for (k = 0; k < SIZE; k++)
                res[i][j] =(res[i][j] + a[i*SIZE+k] * b[k*SIZE+j])%MOD;
    for (i = 0; i < SIZE; i++)
        for (j = 0; j < SIZE; j++)
            a[i*SIZE+j] = res[i][j];
    return;
}
void powm(long long*a,int n,long long*res,int SIZE){
    one(res,SIZE);
    while (n > 0) {
        if (n % 2 == 0)
        {
            mul(a, a,SIZE);
            n /= 2;
        }
        else {
            mul(res, a,SIZE);
            n--;
        }
    }
}








In Python3 :





#http://stackoverflow.com/questions/24701490/modular-matrix-inversion-with-large-number?lq=1
MOD = 1000000007

def generalizedEuclidianAlgorithm(a, b):
    if b > a:
        return generalizedEuclidianAlgorithm(b,a);
    elif b == 0:
        return (1, 0);
    else:
        (x, y) = generalizedEuclidianAlgorithm(b, a % b);
        return (y, x - (a // b) * y)

def inversemodp(a, p):
    a = a % p
    if (a == 0):
        # print "a is 0 mod p"
        return 0
    (x,y) = generalizedEuclidianAlgorithm(p, a % p);
    return y % p

def identitymatrix(n):
    return [[int(x == y) for x in range(0, n)] for y in range(0, n)]

def multiply_vector_scalar(vector, scalar, q):
    kq = []
    for i in range (0, len(vector)):
        kq.append (vector[i] * scalar %q)
    return kq

def minus_vector_scalar1(vector1, scalar, vector2, q):
    kq = []
    for i in range (0, len(vector1)):
        kq.append ((vector1[i] - scalar * vector2[i]) %q)
    return kq

def inversematrix1(matrix, q):
    n = len(matrix)

    A =[]
    for j in range (0, n):
        temp = []
        for i in range (0, n):
            temp.append (matrix[j][i])
        A.append(temp)

    Ainv = identitymatrix(n)

    for i in range(0, n):
        factor = inversemodp(A[i][i], q)
        A[i] = multiply_vector_scalar(A[i],factor,q)
        Ainv[i] = multiply_vector_scalar(Ainv[i],factor,q)
        for j in range(0, n):
            if (i != j):
                factor = A[j][i]
                A[j] = minus_vector_scalar1(A[j],factor,A[i],q)
                Ainv[j] = minus_vector_scalar1(Ainv[j],factor,Ainv[i],q)
    return Ainv

def mult(x, y):
	c = [[0 for _ in range(len(y[0]))] for _ in range(len(x))]

	for i in range(len(x)):
		for j in range(len(y[0])):
			for k in range(len(x)):
				c[i][j] += x[i][k] * y[k][j]
				c[i][j] = c[i][j] % MOD
	return c

def matpow(b, p):
	if p == 0: return identitymatrix(n)
	if p == 1: return b
	if p % 2 == 1:
		return mult(b, matpow(b, p - 1))
	ret = matpow(b, p // 2)
	return mult(ret, ret)

n, k = map(int, input().split())
arrk = list(map(int, input().split()))
arrc = list(map(int, input().split()))

left = [[x] for x in arrk];
middle = [[0 for _ in range(n)] for _ in range(n)]
middle[0] = list(arrc)
for i in range(1,n):
	middle[i][i-1] = 1

inv = inversematrix1(middle, MOD)
inv = [[int(x) for x in y] for y in inv]

ans = matpow(inv, k - n + 1)
ans = mult(ans, left)

print(' '.join(map(lambda x : str(x[0]), ans)))
                        








View More Similar Problems

Reverse a linked list

Given the pointer to the head node of a linked list, change the next pointers of the nodes so that their order is reversed. The head pointer given may be null meaning that the initial list is empty. Example: head references the list 1->2->3->Null. Manipulate the next pointers of each node in place and return head, now referencing the head of the list 3->2->1->Null. Function Descriptio

View Solution →

Compare two linked lists

You’re given the pointer to the head nodes of two linked lists. Compare the data in the nodes of the linked lists to check if they are equal. If all data attributes are equal and the lists are the same length, return 1. Otherwise, return 0. Example: list1=1->2->3->Null list2=1->2->3->4->Null The two lists have equal data attributes for the first 3 nodes. list2 is longer, though, so the lis

View Solution →

Merge two sorted linked lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the heads of two sorted linked lists, merge them into a single, sorted linked list. Either head pointer may be null meaning that the corresponding list is empty. Example headA refers to 1 -> 3 -> 7 -> NULL headB refers to 1 -> 2 -> NULL The new list is 1 -> 1 -> 2 -> 3 -> 7 -> NULL. Function Description C

View Solution →

Get Node Value

This challenge is part of a tutorial track by MyCodeSchool Given a pointer to the head of a linked list and a specific position, determine the data value at that position. Count backwards from the tail node. The tail is at postion 0, its parent is at 1 and so on. Example head refers to 3 -> 2 -> 1 -> 0 -> NULL positionFromTail = 2 Each of the data values matches its distance from the t

View Solution →

Delete duplicate-value nodes from a sorted linked list

This challenge is part of a tutorial track by MyCodeSchool You are given the pointer to the head node of a sorted linked list, where the data in the nodes is in ascending order. Delete nodes and return a sorted list with each distinct value in the original list. The given head pointer may be null indicating that the list is empty. Example head refers to the first node in the list 1 -> 2 -

View Solution →

Cycle Detection

A linked list is said to contain a cycle if any node is visited more than once while traversing the list. Given a pointer to the head of a linked list, determine if it contains a cycle. If it does, return 1. Otherwise, return 0. Example head refers 1 -> 2 -> 3 -> NUL The numbers shown are the node numbers, not their data values. There is no cycle in this list so return 0. head refer

View Solution →