Find the permutation


Problem Statement :


Consider a permutation, , of integers from  to . Let's determine the  of  to be the minimum absolute difference between any  consecutive integers in :

Generate a lexicographically sorted list of all permutations of length  having a maximal distance between all permutations of the same length. Print the lexicographically  permutation.

Input Format

The first line contains an integer, t (the number of test cases).

The t subsequent lines each contain two space-separated integers,  (the permutation length) and  (the 1-based index in the list of permutations having a maximal distance), respectively. The  line corresponds to the  test case.

Note: It is guaranteed that the sum of all ni  does not exceed 10^6.

Constraints

1  <=  t  <=  10
1  <=  ni  <=  10^6
1  <=  ki  <= 10^18

Output Format

For each test case: if the list of permutations having maximal distance has at least k elements, print the kth permutation as sequential (i.e.: from 1 to n ) space-separated integers on a new line; otherwise, print -1.



Solution :



title-img


                            Solution in C :

In   C++  :






#include <algorithm>
#include <assert.h>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include <unordered_set>

using namespace std;

static const uint64_t one = 1;

void SolveSimple(uint64_t n, uint64_t k)
{
    assert((n & 1) == 0);
    if (k > 2)
    {
        cout << -1 << endl;
    }
    else
    {
        for (uint64_t i = 0; i < n / 2; ++i)
        {
            if (k == 1)
                cout << (n / 2 - i) << " " << (n - i) << " ";
            else
                cout << (n / 2 + i + 1) << " " << (i + 1) << " ";
        }
        cout << endl;
    }
}

class Solution
{
public:
    vector<uint64_t> solution;
    uint64_t n;
    uint64_t k;

    int AdjustPlace()
    {
        uint64_t t = k;
        uint64_t n0 = 2;
        if (t < n0)
            return 1;
        uint64_t s = n0;
        t -= s;
        for (uint64_t i = 0; i < n / 2 - 1; ++i)
        {
            uint64_t p2 = (one << i);
            if (t < (s + p2))
                return 1;
            t -= (s + p2);
            s = 2 * s + p2;
        }
        uint64_t p2 = (one << (n / 2));
        if (t < p2)
        {
            k = t;
            return 2;
        }
        t -= p2;
        if (t < s)
        {
            k = s - 1 - t;
            return 3;
        }
        return -1;
    }

    void Inverse()
    {
        for (size_t i = 0; i < solution.size(); ++i)
        {
            solution[i] = n + 1 - solution[i];
        }
    }

    void Solve1()
    {
        vector<int> used(n + 2, 0);
        uint64_t p = 0;
        uint64_t mi = n / 2;
        for (;;)
        {
            if (k == 0)
            {
                solution[p++] = 1;
                for (size_t i = n / 2 + 1; i > 1; --i)
                {
                    if (!used[i])
                    {
                        solution[p++] = i;
                        solution[p++] = i + n / 2;
                    }
                }
                return;
            }
            if (k == 1)
            {
                size_t i1 = 1;
                size_t i2 = n / 2 + 2;
                for (; p < n - 1; )
                {
                    for (; used[i1]; ++i1);
                    for (; used[i2]; ++i2);
                    solution[p++] = i1++;
                    solution[p++] = i2++;
                }
                solution[p++] = n / 2 + 1;
                return;
            }
            uint64_t s = 2;
            k -= s;
            for (uint64_t i = 0; ; ++i)
            {
                if (k < s)
                {
                    solution[p++] = i + 2;
                    solution[p++] = i + 2 + n / 2;
                    used[i + 2] = 1;
                    used[i + 2 + n / 2] = 1;
                    break;
                }
                k -= s;
                size_t p2 = (one << i);
                if (k < p2)
                {
                    size_t i1 = i + 2;
                    size_t i2 = n / 2 + i1 + 1;
                    for (; ;)
                    {
                        for (; used[i1]; ++i1);
                        if (i1 == (n / 2 + 1))
                        {
                            break;
                        }
                        for (; used[i2]; ++i2);
                        solution[p++] = i1++;
                        solution[p++] = i2++;
                    }
                    solution[p++] = i1;
                    solution[p++] = 1;
                    Solve2I(i);
                    return;
                }
                k -= p2;
                s = 2 * s + p2;
            }
        }
    }

    void Solve2I(uint64_t r)
    {
        assert(k < (one << r));
        uint64_t sf = n - 2 * r - 1;
        uint64_t sb = n - 1;
        uint64_t s2 = 2;
        for (uint64_t i = 0; i < r; ++i)
        {
            uint64_t p2 = (one << (r - i - 1));
            if (k < p2)
            {
                solution[sf] = n / 2 + s2 + i;
                solution[sf + 1] = s2 + i;
                sf += 2;
            }
            else
            {
                k -= p2;
                solution[sb] = n / 2 + s2 + i;
                solution[sb - 1] = s2 + i;
                sb -= 2;
            }
        }
        assert(sf == sb);
        solution[sf] = n / 2 + s2 + r;
    }

    void Solve2()
    {
        uint64_t m = (one << (n / 2 - 1));
        if (k >= m)
        {
            k = 2 * m - 1 - k;
            Solve2();
            Inverse();
            return;
        }
        solution[0] = (n / 2) + 1;
        solution[1] = 1;
        Solve2I(n/2 - 1);
    }

    bool Solve(uint64_t _n, uint64_t _k)
    {
        n = _n;
k = _k - 1;
int status = AdjustPlace();
if (status == -1)
return false;
solution.resize(n);
if (status == 1)
Solve1();
if (status == 2)
Solve2();
if (status == 3)
{
Solve1();
Inverse();
}
return true;
}
};

class STest
{
public:
uint64_t count;
Solution S;

void PrintAllI(vector<int>& v, int k, int min_diff, vector<bool>& av)
{
if (k == v.size())
{
++count;
S.Solve(v.size(), count);
{
for (int i = 0; i < k; ++i)
{
cout << v[i] + 1 << " ";
}
cout << endl;
for (int i = 0; i < k; ++i)
{
cout << S.solution[i] << " ";
}
cout << endl;
}
}
else
{
int j = (k > 0) ? v[k - 1] : -min_diff;
for (int i = 0; i < int(av.size()); ++i)
{
if (av[i] && (abs(i - j) >= min_diff))
{
v[k] = i;
av[i] = false;
PrintAllI(v, k + 1, min_diff, av);
av[i] = true;
}
}
}
}

void PrintAll(int n)
{
count = 0;
vector<int> v(n, -1);
vector<bool> av(n, true);

PrintAllI(v, 0, n / 2, av);
}
};

void SSolve(uint64_t n, uint64_t k)
{
if (n == 1)
{
if (k == 1)
{
cout << 1 << endl;
}
else
{
cout << -1 << endl;
}
return;
}
Solution S;
if (S.Solve(n, k))
{
for (size_t i = 0; i < S.solution.size(); ++i)
{
cout << S.solution[i] << " ";
}
cout << endl;
}
else
{
cout << -1 << endl;
}
}

int main()
{
//STest t;
//t.PrintAll(11);
int T;
cin >> T;
for (; T; --T)
{
uint64_t n, k;
cin >> n >> k;
if (n & 1) 
{
SSolve(n, k);
}
else
{
SolveSimple(n, k);
}
}
return 0;
}







In   Java  :






import java.io.*;
import java.util.*;

public class Solution {

static String s = " ";
static long[] countSumms = new long[] { 
0, 2, 5, 12, 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, 69632,
147456, 311296, 655360, 1376256, 2883584, 6029312, 12582912, 26214400,
54525952, 113246208, 234881024, 486539264, 1006632960, 2080374784,
4294967296l, 8858370048l, 18253611008l, 37580963840l, 77309411328l,
158913789952l, 326417514496l, 670014898176l, 1374389534720l, 2817498546176l,
5772436045824l, 11819749998592l, 24189255811072l, 49478023249920l,
101155069755392l, 206708186021888l, 422212465065984l, 862017116176384l,
1759218604441600l, 3588805953060864l, 7318349394477056l, 14918173765664768l,
30399297484750848l, 61924494876344320l, 126100789566373888l, 256705178760118272l,
522417556774977536l };
static int[] NOT_FOUND = new int[] { -1 };

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for(int i = 0; i < t; i++) {
int n = sc.nextInt();
long k = sc.nextLong();
int[] res = solve(n, k);
StringBuilder b = new StringBuilder(countString(n));
for (int j = 0; j < res.length; j++) {
b.append(res[j]).append(s);
}
System.out.println(b.toString());
}
sc.close();
}
static int[] solve(int n, long k) {

if(n == 1) {
if(k == 1) {
return new int[] { 1 };
}
return NOT_FOUND;
}

int min = n >> 1;

/* even n */
if ((n & 1) == 0) {
if (k == 1) {
int[] ret = new int[n];
int ix = 0;
for (int i = 0; i < min; i++) {
ret[ix++] = min - i;
ret[ix++] = n - i;
}
return ret;
} else if (k == 2) {
int[] ret = new int[n];
int ix = 0;
for (int i = 0; i < min; i++) {
ret[ix++] = min + i + 1;
ret[ix++] = i + 1;
}
return ret;
} else {
return NOT_FOUND;
}
}
/* odd n */
long midCount = 1L << min;
boolean flip = false;
boolean middle = false;
int countSummIx = min;
long countsSumm;

k--;
/* k is before mid section */
if (countSumms.length < countSummIx || k < (
    countsSumm = countSumms[countSummIx])) {
}
/* k is inside of mid section */
else if (k < (
countsSumm = countSumms[countSummIx]) + midCount) {
k = k - countsSumm;
middle = true;
}
/* k is after mid section but before end of last side */
else if (k < (countsSumm << 1) + midCount) {
k = Math.abs(k - (countsSumm << 1) - midCount + 1);
flip = true;
}
/* k out of range */
else {
return NOT_FOUND;
}

int[] arr = new int[n];
if (middle) {
arr[0] = min + 1;
arr[1] = 1;
if (k >= midCount >> 1) {
k = midCount - 1 - k;
flip = true;
}
solveRadius(n, k, min - 1, arr, min);
if (flip) {
int n_1 = n + 1;
for (int i = 0; i < arr.length; i++) {
arr[i] = n_1 - arr[i];
}
}
return arr;
}
solveSide(arr, n, k, min);
if (flip) {
int n_1 = n + 1;
for (int i = 0; i < arr.length; i++) {
arr[i] = n_1 - arr[i];
}
}
return arr;
}
static void solveSide(int[] arr, int n,
 long k, int min) {
boolean[] cache = new boolean[n + 1];
int ix = 0;
outer:while (true) {
if (k == 0) {
arr[ix++] = 1;
for (int i = min + 1; i > 1; i--) {
if (!cache[i]) {
arr[ix++] = i;
arr[ix++] = i + min;
}
}
break;
}
if (k == 1) {
for (int left = 1, right = min + 2, n_1 = n - 1; ix < n_1;) {
while (cache[left])    left++;
while (cache[right]) right++;
arr[ix++] = left++;
arr[ix++] = right++;
}
arr[ix++] = min + 1;
break;
}
k -= countSumms[1];
long next = 1L;
for (int i = 0, j = 2;; ++i, j++, next <<= 1) {
if (k < countSumms[i + 1]) {
arr[ix++] = j;
arr[ix++] = j + min;
cache[j] = cache[j + min] = true;
break;
}
k -= countSumms[i + 1];
if (k < next) {
int left = j;
int right = min + left + 1;
while (true) {
while (cache[left])    left++;
if (left == min + 1) {
break;
}
while (cache[right]) right++;
arr[ix++] = left++;
arr[ix++] = right++;
}
arr[ix++] = left;
arr[ix++] = 1;
solveRadius(n, k, i, arr, min);
break outer;
}
k -= next;
}
}
}
static int countString(int n) {
int ret = 0;
if(n < 10) { return n << 1; }
ret += 18;
if(n < 100) { ret += (n - 9) * 3; return ret;}
ret += 270;
if(n < 1000) { ret += (n - 99) << 2; return ret;}
ret += 3600;
if(n < 10000) { ret += (n - 999) * 5; return ret;}
ret += 45000;
if(n < 100000) { ret += (n - 9999) * 6; return ret;}
ret += 540000;
ret += (n - 99999) * 7;
return ret;
}
static void solveRadius(int n, long k, 
int radius, int[] arr, int min) {
int left = n - (radius << 1) - 1;
int right = n - 1;
int min_2 = min + 2;
for (int i = 0; i < radius; ++i) {
long next = (1L << (radius - (i + 1)));
if (k < next) {
arr[left] = min_2 + i;
arr[left + 1] = 2 + i;
left += 2;
} else {
arr[right] = min_2 + i;
arr[right - 1] = 2 + i;
right -= 2;
k -= next;
}
}
arr[left] = min_2 + radius;
}
}








In   C  :






#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

static const unsigned long long int one = 1;
static unsigned long long int* solution;
unsigned long long int n, k;

void solve2I(unsigned long long int r)
{
assert(k < (one << r));
unsigned long long int sf = n - 2 * r - 1;
unsigned long long int sb = n - 1;
unsigned long long int s2 = 2;
for (unsigned long long int i = 0; i < r; ++i)
{
unsigned long long int p2 = (one << (r - i - 1));
if (k < p2)
{
solution[sf] = n / 2 + s2 + i;
solution[sf + 1] = s2 + i;
sf += 2;
}
else
{
k -= p2;
solution[sb] = n / 2 + s2 + i;
solution[sb - 1] = s2 + i;
sb -= 2;
}
}
assert(sf == sb);
solution[sf] = n / 2 + s2 + r;
}

void solveTwo()
{
unsigned long long int m = (one << (n / 2 - 1));
if (k >= m)
{
k = 2 * m - 1 - k;
solveTwo();
for (size_t i = 0; i < n; ++i)
{
solution[i] = n + 1 - solution[i];
}
return;
}
solution[0] = (n / 2) + 1;
solution[1] = 1;
solve2I(n/2 - 1);
}

void SolveOne()
{
unsigned long long int* used = (
    unsigned long long int*)malloc((n + 2) * sizeof(
        unsigned long long int));
for(unsigned long long int i=0;i<n+2;i++){
used[i] = 0;
}
unsigned long long int p = 0;
for (;;)
{
if (k == 0)
{
solution[p++] = 1;
for (size_t i = n / 2 + 1; i > 1; --i)
{
if (!used[i])
{
solution[p++] = i;
solution[p++] = i + n / 2;
}
}
return;
}
if (k == 1)
{
size_t i1 = 1;
size_t i2 = n / 2 + 2;
for (; p < n - 1; )
{
for (; used[i1]; ++i1);
for (; used[i2]; ++i2);
solution[p++] = i1++;
solution[p++] = i2++;
}
solution[p++] = n / 2 + 1;
return;
}
unsigned long long int s = 2;
k -= s;
for (unsigned long long int i = 0; ; ++i)
{
if (k < s)
{
solution[p++] = i + 2;
solution[p++] = i + 2 + n / 2;
used[i + 2] = 1;
used[i + 2 + n / 2] = 1;
break;
}
k -= s;
size_t p2 = (one << i);
if (k < p2)
{
size_t i1 = i + 2;
size_t i2 = n / 2 + i1 + 1;
for (; ;)
{
for (; used[i1]; ++i1);
if (i1 == (n / 2 + 1))
{
break;
}
for (; used[i2]; ++i2);
solution[p++] = i1++;
solution[p++] = i2++;
}
solution[p++] = i1;
solution[p++] = 1;
solve2I(i);
return;
}
k -= p2;
s = 2 * s + p2;
}
}
}

int AdjustPlace()
{
unsigned long long int t = k;
unsigned long long int n0 = 2;
if (t < n0)
return 1;
unsigned long long int s = n0;
t -= s;
for (unsigned long long int i = 0; i < n / 2 - 1; ++i)
{
unsigned long long int p2 = (one << i);
if (t < (s + p2))
return 1;
t -= (s + p2);
s = 2 * s + p2;
}
unsigned long long int p2 = (one << (n / 2));
if (t < p2)
{
k = t;
return 2;
}
t -= p2;
if (t < s)
{
k = s - 1 - t;
return 3;
}
return -1;
}

unsigned long long int* solve(){
unsigned long long int* v;
if(n%2==1){
if(n==1) {
if (k == 1) {
v = (unsigned long long int*)malloc(
    1 * sizeof(unsigned long long int));
v[0] = 1;
return v;
} else {
v = NULL;
return v;
}
}
k--;
int status = AdjustPlace();
if (status == -1) {
v = NULL;
return v;
}
solution = (unsigned long long int*)malloc(
    n * sizeof(unsigned long long int));
if (status == 1)
SolveOne();
if (status == 2)
solveTwo();
if (status == 3)
{
SolveOne();
for (unsigned long long int i = 0; i < n; ++i)
{
solution[i] = n + 1 - solution[i];
}
}
return solution;
}
else {
assert((n & 1) == 0);
if (k > 2)
{
v = NULL;
return v;
}
else
{
unsigned long long int j = 0;
v = (unsigned long long int*)malloc(
    n * sizeof(unsigned long long int));
for (unsigned long long int i = 0; i < n / 2; ++i)
{
if (k == 1) {
v[j++] = (n/2-i);
v[j++] = (n-i);
}
else {
v[j++] = (n / 2 + i + 1);
v[j++] = (i + 1);
}
}
}
}
return v;
}

void print(unsigned long long int* v){
for(unsigned long long int i=0;i<n-1;i++)
printf("%lld ", v[i]);
printf("%lld\n", v[n-1]);
}
int main() {
unsigned long long int t;
scanf("%lld", &t);
while(t--){
scanf("%lld %lld", &n, &k);
unsigned long long int* t = solve();
if(t == NULL){
printf("%i\n", -1);
} else {
print(t);
}
}
return 0;
}








In Python3 :






from bisect import *
import collections
from time import time
import random

popdistr = collections.Counter()

def naive(n, k):
    def gen(perm, nums):
        if len(perm) == n:
            perms.append(perm)
        for i in sorted(nums):
            if abs(perm[-1] - i) >= mindist:
                gen(perm + [i], nums - {i})
    perms = []
    mindist = n // 2
    for i in range(n):
        gen([i], set(range(n)) - {i})
    return perms[k] if k < len(perms) else -1

if 0:
    for k in range(7):
        print(naive(3, k))
    input()


def smart(n, k):
    if n < 5:
        return naive(n, k)
    
    half = n // 2
    h = half
    H = half + 1

    # Even n cases
    if not n & 1:
        if k > 1:
            return -1
        perm = [None] * n
        if k == 0:
            # 4 9 3 8 2 7 1 6 0 5
            perm[::2] = range(h-1, -1, -1)
            perm[1::2] = range(n-1, h-1, -1)
        else:
            # 5 0 6 1 7 2 8 3 9 4
            perm[::2] = range(h, n)
            perm[1::2] = range(h)
        return perm

    low = (h + 3) << (h - 2)
    #low = 2 if n == 3 else (h + 3) << (h - 2)
    lowmid = 1 << (h - 1)
    #print(k, low, lowmid)
    if k >= (low + lowmid) * 2:
        return -1
    if k >= low + lowmid:
        merp = smart(n, (low + lowmid) * 2 - 1 - k)
        if merp == -2:
            return merp
        return [n-1 - m for m in merp]
    if k >= low:
        return binary(list(range(n)), k-low, h)
    
    offset = [2]
    for i in range(half - 1):
        offset.append(offset[-1] * 2 + (1 << i))
        if offset[-1] > 10**30:
            break
    offset.append(offset[-1] + (1 << (i + 1)))
    offset.append(0)  # offset[-1] = 0
    #print(offset)

    nums = list(range(n))
    perm = []
    pops = 0
    while True:

        # Cases k=0, k=1
        if k < 2:
            # n=11: 0 5 10 4 9 3 8 2 7 1 6
            #       0 6 1 7 2 8 3 9 4 10 5
            add = h + k
            return perm + [nums[i*add % n] for i in range(n)]

        i = bisect(offset, k)
        k -= offset[i-1]

        #print(offset, i, k, end=' ... ')
        
        # Binary cases
        if k >= offset[i-1]:# or i == h:
            return perm + binary(nums, k - offset[i-1], i)

        # Ugly cases
        perm += nums.pop(i), nums.pop(i+h-1)
        n -= 2
        half -= 1
        h -= 1
        H -= 1

        if pops:
            popdistr[pops] -= 1
        pops += 1
        popdistr[pops] += 1

def binary(nums, k, i):
    n = len(nums)
    half = n // 2
    H = half + 1
    perm = [None] * n
    ks, testbit = bin(k)[:1:-1], half - 1
    left, right = 0, n - 1
    for m in range(i, i+half):
        if testbit < len(ks) and ks[testbit] == '1':
            perm[right] = nums[m]
            perm[right-1] = nums[(m + H) % n]
            right -= 2
        else:
            perm[left] = nums[m]
            perm[left+1] = nums[(m + H) % n]
            left += 2
        testbit -= 1
    perm[left] = nums[i + half]
    return perm

if 1:
    t = int(input())
    for _ in range(t):
        n, k = map(int, input().split())
        perm = smart(n, k-1)
        print(-1 if perm == -1 else ' '.join(str(p+1) for p in perm))
                        








View More Similar Problems

Jenny's Subtrees

Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .

View Solution →

Tree Coordinates

We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For

View Solution →

Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →

Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ

View Solution →

Array and simple queries

Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty

View Solution →

Median Updates

The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o

View Solution →