# Find Maximum Index Product

### Problem Statement :

```You are given a N list of  numbers . For each element at position  (), we define  and  as:
= closest index j such that j < i and . If no such j exists then  = 0.
= closest index k such that k > i and . If no such k exists then  = 0.

We define  =  * . You need to find out the maximum  among all i.

Input Format

The first line contains an integer , the number of integers. The next line contains the  integers describing the list a[1..N].

Constraints

1  <=  N  <=  10^5
1  <= ai  <=  10^9

Output Format

Output the maximum IndexProduct among all indices from 1 to N.```

### Solution :

```                            ```Solution in C :

In   C++  :

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

int inp[100010];
int sta[100010][2];
int lef[100010];
int rig[100010];
int n;

void find(int *arr, int st, int ed, int d, int *out) {
int top = 1;
sta[0][0] = 2000000000;
sta[0][1] = 0;
for (int i=st; i!=ed; i+=d) {
while (sta[top-1][0] <= arr[i]) top--;
out[i] = sta[top-1][1];
sta[top][0] = arr[i];
sta[top++][1] = i+1;
}
return;
}
int main() {

scanf("%d", &n);
for (int i=0; i<n; i++)scanf("%d", &inp[i]);
find(inp, 0, n, 1, lef);
find(inp, n-1, -1, -1, rig);
long long ans = 0;
for (int i=0; i<n; i++) {
if ((long long)lef[i] * rig[i] > ans) ans = (long long)lef[i] * rig[i];
}
cout << ans << endl;
return 0;
}

In    Java  :

import java.awt.Point;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.util.ArrayList;

public class Solution {
public static void main(String[] args) throws IOException,
NumberFormatException {
BufferedOutputStream bos =
new BufferedOutputStream(System.out);
byte[] eolb = System.getProperty(
"line.separator").getBytes();

long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = Integer.parseInt(values[i]);
}

long[] leftArr = new long[n];
ArrayList<Point> states = new ArrayList<Point>();
for (int i = 1; i < n; i++) {
for (int j = states.size() - 1; j >= 0; j--) {
if (states.get(j).getX() > arr[i]) {
leftArr[i] = (int) states.get(j).getY();
states.add(new Point((int) arr[i], i + 1));
break;
} else {
states.remove(j);
if (states.size() == 0) {
states.add(new Point((int) arr[i], i + 1));
break;
}
}
}
}
states.clear();

long[] rightArr = new long[n];
states.add(new Point((int) arr[n - 1], n));
for (int i = n - 2; i >= 0; i--) {
for (int j = states.size() - 1; j >= 0; j--) {
if (states.get(j).getX() > arr[i]) {
rightArr[i] = (int) states.get(j).getY();
states.add(new Point((int) arr[i], i + 1));
break;
} else {
states.remove(j);
if (states.size() == 0) {
states.add(new Point((int) arr[i], i + 1));
break;
}
}
}
}

long ans = -1;
for (int i = 0; i < n; i++) {
ans = Math.max(ans,
(long) leftArr[i] * rightArr[i]);
}
bos.write(String.valueOf(ans).getBytes());
bos.write(eolb);
bos.flush();

}
}

In   C  :

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>

int main() {

long int n, left=0, right=0, i, j, a[100000], out, max=0;

scanf("%ld", &n);
for(i=0;i<n;i++)
{
scanf("%ld", &a[i]);
}
for(i=n-1;i>=1;i--)
{
/*    for(j=i-1;j>=0;j--)
{
if(a[j]>a[i])
{
left=j+1;
break;
}
}
for(j=i+1;j<=n-1;j++)
{
if(a[j]>a[i])
{
right=j+1;
break;
}
}*/
if(a[i]<a[i+1]&&a[i]<a[i-1])
{
max=i*(i+2);
break;
}

/*out=left*right;
if(out>max)
max=out;
left=0;
right=0;*/

}
printf("%ld", max);
return 0;
}

In   Python3  :

def lefts(L):
left = [];
maxes = [];
for i in range(len(L)):
while maxes and L[maxes[-1]] <= L[i]:
maxes.pop();
if not maxes: left.append(-1);
else: left.append(maxes[-1]);
maxes.append(i); #maxes = [i];
return left;

def rights(L):
right = [];
maxes = [];
for i in range(len(L)-1, -1, -1):
while maxes and L[maxes[-1]] <= L[i]:
maxes.pop();
if not maxes: right.append(-1);
else: right.append(maxes[-1]);
maxes.append(i); #maxes = [i];
right.reverse();
return right;

def indexProduct(L):
left = lefts(L);
right = rights(L);
products = ((left[i] + 1) * (right[i] + 1) for i in range(len(L)));
return max(products);

if __name__ == "__main__":
input();
L = [int(n) for n in input().split()];
print(indexProduct(L));```
```

## Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

## Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

## Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

## Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

## Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

## Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your \$inOrder* func