Fibonacci Numbers Tree
Problem Statement :
Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T: 1. UXK Update the subtree rooted at node X such that the node at level 0 in subtree X (i.e., node X) will have Fk added to it, all the nodes at level 1 will have Fk+1 added to them, and so on. More formally, all the nodes at a distance D from node X in the subtree of node X will have the ( k - D)th Fibonacci number added to them. 2. QXY Find the sum of all values associated with the nodes on the unique path from X to Y . Print your sum modulo 10^9 + 7 on a new line. Given the configuration for tree T and a list of M operations, perform all the operations efficiently. Note: .F1 = F2 = 1. Input Format The first line contains 2 space-separated integers, N (the number of nodes in tree T) and M (the number of operations to be processed), respectively. Each line i of the N-1 subsequent lines contains an integer, P, denoting the parent of the ( i -1 )th node. Each of the M subsequent lines contains one of the two types of operations mentioned in the Problem Statement above. Constraints 1 <= N, M <= 10^5 1 <= X, Y <= N 1 <= k <= 10^15 Output Format For each operation of type 2(i.e.,Q ), print the required answer modulo 10^9 + 7 on a new line.
Solution :
Solution in C :
In C++ :
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<cassert>
#define PB push_back
#define MP make_pair
#define sz(v) (in((v).size()))
#define forn(i,n) for(in i=0;i<(n);++i)
#define forv(i,v) forn(i,sz(v))
#define fors(i,s) for(auto i=(s).begin();i!=(s).end();++i)
#define all(v) (v).begin(),(v).end()
using namespace std;
typedef int in;
typedef vector<in> VI;
typedef vector<VI> VVI;
const in pmod=1000000007LL;
long long p2(long long a){
return (1LL<<a);
}
template<typename T> T pw(T a, in b){
T r=1LL;
for(long long i=30;i>=0;i--){
r*=r;
if(b&p2(i))
r*=a;
}
return r;
}
struct fp{
long long a;
fp(long long aa=0){
a=aa;
if(a<0 || a>=pmod){
a%=pmod;
if(a<0)
a+=pmod;
}
}
fp inv()const{
return pw(*this,pmod-2);
}
fp operator*(const fp cp)const{
return fp((a*cp.a)%pmod);
}
fp operator+(const fp cp)const{
return fp((a+cp.a)>pmod?a+cp.a-pmod:a+cp.a);
}
fp operator/(const fp cp)const{
return (*this)*cp.inv();
}
fp operator-(const fp cp)const{
return (*this)+(-cp);
}
fp operator-()const{
return (a==0?0:pmod-a);
}
fp& operator*=(const fp cp){
return (*this)=(*this)*cp;
}
fp& operator/=(const fp cp){
return (*this)=(*this)/cp;
}
fp& operator+=(const fp cp){
return (*this)=(*this)+cp;
}
fp& operator-=(const fp cp){
return (*this)=(*this)-cp;
}
bool operator==(const fp cp)const{
return a==cp.a;
}
bool operator!=(const fp cp)const{
return a!=cp.a;
}
};
ostream& operator<<(ostream& os, fp a){
return os<<a.a;
}
struct mat{
vector<vector<fp> > a;
in n,m;
void ini(in pn, in pm){
a.clear();
n=pn;
m=pm;
a.resize(n,vector<fp>(m,fp(0LL)));
}
mat operator*(const mat& cp)const{
assert(m==cp.n);
mat r;
r.ini(n,cp.m);
long long t;
forn(i,n){
forn(j,cp.m){
t=0;
forn(k,m){
t+=a[i][k].a*cp.a[k][j].a;
}
r.a[i][j]=t;
}
}
return r;
}
mat& operator*=(const mat& cp){
assert(m==cp.n);
mat r;
r.ini(n,cp.m);
long long t;
forn(i,n){
forn(j,cp.m){
t=0;
forn(k,m){
t+=a[i][k].a*cp.a[k][j].a;
}
r.a[i][j]=t;
}
}
return *this=r;
}
mat operator+(const mat& cp)const{
assert(n==cp.n && m==cp.m);
mat r;
r.ini(n,m);
forn(i,n){
forn(j,m){
r.a[i][j]=a[i][j]+cp.a[i][j];
}
}
return r;
}
mat& operator+=(const mat& cp){
assert(n==cp.n && m==cp.m);
forn(i,n){
forn(j,m){
a[i][j]+=cp.a[i][j];
}
}
return *this;
}
};
mat pwm(mat a, long long b){
mat r=a;
forv(i,r.a){
forv(j,r.a[i])
r.a[i][j]=(i==j);
}
bool odn=0;
for(long long i=51;i>=0;i--){
if(odn)
r*=r;
if(b&p2(i)){
odn=1;
r*=a;
}
}
return r;
}
mat basfib;
mat fibmat;
mat ttp,ts;
mat smfib,sft;
vector<mat> smpw;
pair<fp,fp> fbat(long long a){
ttp=pwm(fibmat,a-1)*basfib;
return MP(ttp.a[0][0],ttp.a[1][0]);
}
struct fenw{
vector<mat> fw;
in n;
void ini(in pn){
n=pn;
fw.clear();
fw.resize(n);
forn(i,n)
fw[i].ini(3,1);
}
void ad(in l, mat ts){
in ol=l;
while(l<n){/*
mat tt=smpw[l-ol]*ts;
cout<<"ad "<<l<<endl;
forv(i,tt.a){
forv(j,tt.a[i]){
cout<<tt.a[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;*/
fw[l]+=smpw[l-ol]*ts;
l|=(l+1);
}
}
mat sm(in l){
mat r;
r.ini(3,1);
in ol=l;
while(l>=0){/*
mat tt=smpw[ol-l]*fw[l];
cout<<"sm "<<l<<endl;
forv(i,tt.a){
forv(j,tt.a[i]){
cout<<tt.a[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;*/
r+=smpw[ol-l]*fw[l];
l&=(l+1);
--l;
}
return r;
}
};
vector<fenw> fws;
VI fid,floc;
VI sts;
const in mxp=18;
VI pr[mxp];
vector<fp> vlf,vls;
VI ht,pap;
void mkfid(in u, bool rq){
if(fid[u]!=-2)
return;
if(sts[u]*2<sts[pr[0][u]] || u==0){
if(rq==0){
fid[u]=floc[u]=-1;
return;
}
in s=sz(fws);
fws.PB(fenw());
fid[u]=s;
floc[u]=0;
return;
}
mkfid(pr[0][u],1);
fid[u]=fid[pr[0][u]];
floc[u]=floc[pr[0][u]]+1;
}
void proct(){
in n=sz(pr[0]);
sts.resize(n,1);
fid=floc=VI(n,-2);
for(in i=n-1;i>0;--i){
sts[pr[0][i]]+=sts[i];
}
for(in i=n-1;i>=0;--i){
mkfid(i,0);
}
for(in i=n-1;i>=0;--i){
if(fid[i]<0)
continue;
if(sz(fws[fid[i]].fw))
continue;
fws[fid[i]].ini(floc[i]+1);
}
pap.resize(n);
forn(i,n){
if(i==0){
pap[i]=-1;
continue;
}
if(floc[i]==0 || floc[i]==-1){
pap[i]=pr[0][i];
continue;
}
pap[i]=pap[pr[0][i]];
}
}
in lca(in u, in v){
if(ht[u]<ht[v])
swap(u,v);
for(in i=mxp-1;i>=0;--i){
if(ht[u]-p2(i)>=ht[v])
u=pr[i][u];
}
assert(ht[u]==ht[v]);
for(in i=mxp-1;i>=0;--i){
if(pr[i][u]!=pr[i][v]){
u=pr[i][u];
v=pr[i][v];
}
}
if(u!=v){
u=pr[0][u];
v=pr[0][v];
}
assert(u==v);
return u;
}
struct qel{
in u;
qel(in a=0){
u=a;
}
bool operator<(const qel& cp)const{
return ht[u]<ht[cp.u];
}
};
priority_queue<qel> q;
VI lvs,lad;
in vdt;
vector<mat> fv;
mat r;
vector<mat> ucm;
void clr(mat& c){
forv(i,c.a){
forv(j,c.a[i])
c.a[i][j]=0;
}
}
void prq(){
qel tel;
in tx;
while(!q.empty()){
tel=q.top();
q.pop();
tx=tel.u;
if(lvs[tx]==vdt)
continue;
lvs[tx]=vdt;
if(fid[tx]==-1){
r+=ucm[tx]*fv[tx];
if(tx==pr[0][tx]){
clr(ucm[tx]);
continue;
}
ucm[pr[0][tx]]+=smpw[1]*ucm[tx];
clr(ucm[tx]);
if(lad[pr[0][tx]]!=vdt){
lad[pr[0][tx]]=vdt;
q.push(qel(pr[0][tx]));
}
continue;
}
r+=ucm[tx]*fws[fid[tx]].sm(floc[tx]);
if(pap[tx]==-1){
clr(ucm[tx]);
continue;
}
ucm[pap[tx]]+=smpw[floc[tx]+1]*ucm[tx];
clr(ucm[tx]);
if(lad[pap[tx]]!=vdt){
lad[pap[tx]]=vdt;
q.push(qel(pap[tx]));
}
}
}
void ansq(in tx, in ty){
r.ini(3,1);
mat cm;
cm.ini(3,3);
forn(i,3)
cm.a[i][i]=1;
in u=lca(tx,ty);
q.push(qel(tx));
q.push(qel(ty));
q.push(qel(u));
ucm[tx]+=cm;
ucm[ty]+=cm;
forn(i,3)
cm.a[i][i]*=-1;
ucm[u]+=cm;
if(u!=0){
q.push(qel(pr[0][u]));
ucm[pr[0][u]]+=cm;
}
++vdt;
prq();
cout<<r.a[0][0]<<"\n";
}
void adq(in tx, long long ty){
mat crm;
crm.ini(3,1);
pair<fp,fp> tt=fbat(ty);
crm.a[0][0]=crm.a[1][0]=tt.first;
crm.a[2][0]=tt.second;
if(fid[tx]==-1){
fv[tx]+=crm;
return;
}
fws[fid[tx]].ad(floc[tx],crm);
}
VI tpr;
VI cod,decod;
VVI tcd;
in nxdec;
void dfscod(in u){
forv(i,tcd[u]){
cod[nxdec]=tcd[u][i];
decod[tcd[u][i]]=nxdec;
++nxdec;
dfscod(tcd[u][i]);
}
}
void mkcod(){
in n=sz(tpr);
cod=decod=VI(n,-1);
tcd.resize(n);
for(in i=1;i<n;++i)
tcd[tpr[i]].PB(i);
cod[0]=decod[0]=0;
nxdec=1;
dfscod(0);
}
void mkt(){
in n,m;
cin>>n>>m;
lvs.resize(n,0);
lad=lvs;
vdt=1;
ucm.resize(n);
forn(i,n)
ucm[i].ini(3,3);
tpr.resize(n);
tpr[0]=0;
forn(i,n-1){
cin>>tpr[i+1];
--tpr[i+1];
}
mkcod();
forn(z,mxp)
pr[z].resize(n);
ht.resize(n);
fv.resize(n);
forn(i,n)
fv[i].ini(3,1);
ht[0]=0;
pr[0][0]=0;
forn(i,n-1){
pr[0][i+1]=decod[tpr[cod[i+1]]];
assert(pr[0][i+1]<i+1);
ht[i+1]=ht[pr[0][i+1]]+1;
}
for(in i=1;i<mxp;++i){
forn(j,n)
pr[i][j]=pr[i-1][pr[i-1][j]];
}
proct();
char typ;
in tx;
long long ty;
forn(zz,m){
cin>>typ>>tx>>ty;
if(typ=='Q'){
ansq(decod[tx-1],decod[ty-1]);
}
else{
adq(decod[tx-1],ty);
}
}
}
const in mx=100009;
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
smfib.ini(3,3);
smfib.a[0][0]=smfib.a[0][2]=smfib.a[1][2]=smfib.a[2][1]=smfib.a[2][2]=1;
sft.ini(3,1);
basfib.ini(2,1);
basfib.a[0][0]=basfib.a[1][0]=1LL;
fibmat.ini(2,2);
fibmat.a[0][0]=0;
fibmat.a[0][1]=fibmat.a[1][0]=fibmat.a[1][1]=1LL;
smpw.resize(mx);
smpw[0].ini(3,3);
forn(i,3)
smpw[0].a[i][i]=1;
for(in i=1;i<sz(smpw);++i)
smpw[i]=smpw[i-1]*smfib;
mkt();
return 0;
}
In Java :
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class H {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve(){
int n = ni();
int Q = ni();
par = new int[n];
for(int i = 1;i < n;i++){
par[i] = ni()-1;
}
par[0] = -1;
int[][] g = parentToG(par);
int[][] pars = parents3(g, 0);
int[] ord = pars[1], dep = pars[2];
clus = decomposeToHeavyLight(g,par, ord);
cluspath = clusPaths(clus, ord);
clusiind = clusIInd(cluspath, n);
int m = cluspath.length;
sts = new SegmentTreeMatrix[m];
for(int i = 0;i < m;i++){
sts[i] = new SegmentTreeMatrix(cluspath[i].length);
}
int[][] spar = logstepParents(par);
for(int z = 0;z < Q;z++){
char type = nc();
if(type == 'U'){
int x = ni()-1;
long K = nl();
sts[clus[x]].update(clusiind[x], K);
}else{
int mod = 1000000007;
int x = ni()-1, y = ni()-1;
int lca = lca2(x, y, spar, dep);
long ret = d(x)+d(y)-d(lca)-d(par[lca]);
ret %= mod;
if(ret < 0)ret += mod;
out.println(ret);
}
}
}
int[] par;
int[] clus, clusiind;
int[][] cluspath;
SegmentTreeMatrix[] sts;
long d(int x){
if(x == -1)return 0;
int[] lcx = new int[100];
int[] lto = new int[100];
int p = 0;
int cx = clus[x];
int ind = clusiind[x];
while (true) {
lcx[p] = cx;
lto[p] = ind+1;
p++;
int con = par[cluspath[cx][0]];
if(con == -1)break;
ind = clusiind[con];
cx = clus[con];
}
int[] v = {0, 0, 1, 0};
for(int i = p-1;i >= 0;i--){
v = sts[lcx[i]].apply(0, lto[i], v);
}
return v[3];
}
public static class SegmentTreeMatrix {
public int M, H, N;
public int[][][] node;
public static int mod = 1000000007;
public static long BIG = 8L*mod*mod;
public static int S = 4;
public SegmentTreeMatrix(int n){
N = n;
M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
H = M>>>1;
node = new int[M][][];
for(int i = 0;i < N;i++){
node[H+i] = new int[S][S];
node[H+i][0][0] = 1;
node[H+i][0][1] = 1;
node[H+i][1][0] = 1;
node[H+i][3][1] = 1;
node[H+i][2][2] = 1;
node[H+i][3][3] = 1;
node[H+i][3][0] = 1;
}
for(int i = H-1;i >= 1;i--)propagate(i);
}
private void propagate(int cur){
node[cur] = prop2(node[2*cur], node[2*cur+1], node[cur]);
}
private int[][] prop2(int[][] L, int[][] R, int[][] C){
if(L != null && R != null){
C = mul(R, L, C, mod);
return C;
}else if(L != null){
return prop1(L, C);
}else if(R != null){
return prop1(R, C);
}else{
return null;
}
}
private int[][] prop1(int[][] L, int[][] C){
if(C == null){
C = new int[S][];
for(int i = 0;i < S;i++){
C[i] = Arrays.copyOf(L[i], S);
}
}else{
for(int i = 0;i < S;i++){
C[i] = Arrays.copyOf(L[i], S);
}
}
return C;
}
public void update(int pos, long x) {
int[][] M = {{1, 1}, {1, 0}};
int[] v = {1, 0};
v = pow(M, v, x-1);
node[H+pos][0][2] += v[0];
if(node[H+pos][0][2] >= mod)node[H+pos][0][2] -= mod;
node[H+pos][1][2] += v[1];
if(node[H+pos][1][2] >= mod)node[H+pos][1][2] -= mod;
node[H+pos][3][2] += v[0];
if(node[H+pos][3][2] >= mod)node[H+pos][3][2] -= mod;
for(int i = H+pos>>>1;i >= 1;i>>>=1)propagate(i);
}
public int[] apply(int l, int r, int[] v){
return apply(l, r, 0, H, 1, v);
}
if(l <= cl && cr <= r){
return mul(node[cur], v, mod);
}else{
int mid = cl+cr>>>1;
if(cl < r && l < mid){
v = apply(l, r, cl, mid, 2*cur, v);
}
if(mid < r && l < cr){
v = apply(l, r, mid, cr, 2*cur+1, v);
}
return v;
}
}
public static int[] mul(int[][] A, int[] v, int mod){
int m = A.length;
int n = v.length;
int[] w = new int[m];
for(int i = 0;i < m;i++){
long sum = 0;
for(int k = 0;k < n;k++){
sum += (long)A[i][k] * v[k];
if(sum >= BIG)sum -= BIG;
}
w[i] = (int)(sum % mod);
}
return w;
}
public static int[][]
mul(int[][] A, int[][] B, int[][] C, int mod){
int m = A.length;
int n = A[0].length;
int o = B[0].length;
if(C == null)C = new int[m][o];
for(int i = 0;i < m;i++){
for(int j = 0;j < o;j++){
long sum = 0;
for(int k = 0;k < n;k++){
sum += (long)A[i][k] * B[k][j];
if(sum >= BIG)sum -= BIG;
}
sum %= mod;
C[i][j] = (int)sum;
}
}
return C;
}
public static int[] pow(int[][] A, int[] v, long e){
for(int i = 0;i < v.length;i++){
if(v[i] >= mod)v[i] %= mod;
}
int[][] MUL = A;
for(;e > 0;e>>>=1) {
if((e&1)==1)v = mul(MUL, v);
MUL = p2(MUL);
}
return v;
}
public static int[] mul(int[][] A, int[] v){
int m = A.length;
int n = v.length;
int[] w = new int[m];
for(int i = 0;i < m;i++){
long sum = 0;
for(int k = 0;k < n;k++){
sum += (long)A[i][k] * v[k];
if(sum >= BIG)sum -= BIG;
}
w[i] = (int)(sum % mod);
}
return w;
}
public static int[][] p2(int[][] A){
int n = A.length;
int[][] C = new int[n][n];
for(int i = 0;i < n;i++){
long[] sum = new long[n];
for(int k = 0;k < n;k++){
for(int j = 0;j < n;j++){
sum[j] += (long)A[i][k] * A[k][j];
if(sum[j] >= BIG)sum[j] -= BIG;
}
}
for(int j = 0;j < n;j++){
C[i][j] = (int)(sum[j] % mod);
}
}
return C;
}
}
public static int lca2(int a, int b,
int[][] spar, int[] depth) {
if (depth[a] < depth[b]) {
b = ancestor(b, depth[b] - depth[a], spar);
} else if (depth[a] > depth[b]) {
a = ancestor(a, depth[a] - depth[b], spar);
}
if (a == b)
return a;
int sa = a, sb = b;
for (int low = 0, high = depth[a],
t = Integer.highestOneBit(high),
k = Integer.numberOfTrailingZeros(t); t > 0;
t >>>= 1, k--) {
if ((low ^ high) >= t) {
if (spar[k][sa] != spar[k][sb]) {
low |= t;
sa = spar[k][sa];
sb = spar[k][sb];
} else {
high = low | t - 1;
}
}
}
return spar[0][sa];
}
protected static int ancestor(int a, int m, int[][] spar) {
for (int i = 0; m > 0 && a != -1; m >>>= 1, i++) {
if ((m & 1) == 1)
a = spar[i][a];
}
return a;
}
public static int[][] logstepParents(int[] par) {
int n = par.length;
int m = Integer.numberOfTrailingZeros(
Integer.highestOneBit(n - 1)) + 1;
int[][] pars = new int[m][n];
pars[0] = par;
for (int j = 1; j < m; j++) {
for (int i = 0; i < n; i++) {
pars[j][i] = pars[j - 1][i] == -1 ? -1
: pars[j - 1][pars[j - 1][i]];
}
}
return pars;
}
public static int[]
decomposeToHeavyLight(int[][] g, int[] par, int[] ord) {
int n = g.length;
int[] size = new int[n];
Arrays.fill(size, 1);
for (int i = n - 1; i > 0; i--)
size[par[ord[i]]] += size[ord[i]];
int[] clus = new int[n];
Arrays.fill(clus, -1);
int p = 0;
outer: for (int i = 0; i < n; i++) {
int u = ord[i];
if (clus[u] == -1)
clus[u] = p++;
for (int v : g[u]) {
if (par[u] != v && size[v] >= size[u] / 2) {
clus[v] = clus[u];
continue outer;
}
}
for (int v : g[u]) {
if (par[u] != v) {
clus[v] = clus[u];
break;
}
}
}
return clus;
}
public static int[][] clusPaths(int[] clus, int[] ord) {
int n = clus.length;
int[] rp = new int[n];
int sup = 0;
for (int i = 0; i < n; i++) {
rp[clus[i]]++;
sup = Math.max(sup, clus[i]);
}
sup++;
int[][] row = new int[sup][];
for (int i = 0; i < sup; i++)
row[i] = new int[rp[i]];
for (int i = n - 1; i >= 0; i--) {
row[clus[ord[i]]][--rp[clus[ord[i]]]] = ord[i];
}
return row;
}
public static int[] clusIInd(int[][] clusPath, int n) {
int[] iind = new int[n];
for (int[] path : clusPath) {
for (int i = 0; i < path.length; i++) {
iind[path[i]] = i;
}
}
return iind;
}
public static int[][] parentToG(int[] par){
int n = par.length;
int[] ct = new int[n];
for(int i = 0;i < n;i++){
if(par[i] >= 0){
ct[i]++;
ct[par[i]]++;
}
}
int[][] g = new int[n][];
for(int i = 0;i < n;i++){
g[i] = new int[ct[i]];
}
for(int i = 0;i < n;i++){
if(par[i] >= 0){
g[par[i]][--ct[par[i]]] = i;
g[i][--ct[i]] = par[i];
}
}
return g;
}
public static int[][] parents3(int[][] g, int root) {
int n = g.length;
int[] par = new int[n];
Arrays.fill(par, -1);
int[] depth = new int[n];
depth[0] = 0;
int[] q = new int[n];
q[0] = root;
for (int p = 0, r = 1; p < r; p++) {
int cur = q[p];
for (int nex : g[cur]) {
if (par[cur] != nex) {
q[r++] = nex;
par[nex] = cur;
depth[nex] = depth[cur] + 1;
}
}
}
return new int[][] { par, q, depth };
}
static int[][] packU(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from)
p[f]++;
for (int t : to)
p[t]++;
for (int i = 0; i < n; i++)
g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
void run() throws Exception{
is = INPUT.isEmpty() ?
System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args)
throws Exception { new H().run(); }
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
private int readByte(){
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); }
catch (IOException e)
{ throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c)
{ return !(c >= 33 && c <= 126); }
private int skip()
{ int b; while((b = readByte()) != -1
&& isSpaceChar(b)); return b; }
private double nd()
{ return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns(){
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n){
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m){
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n){
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni(){
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1
&& !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl(){
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1
&& !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o)
{ System.out.println(Arrays.deepToString(o)); }
}
In Python3 :
#!/usr/bin/python
mod = 10**9 + 7
cache = { 0: (0, 1), 1: (1, 1) }
def fib_pair(n):
if n in cache:
return cache[n]
hn = n//2
f, fp = fib_pair(hn)
if n&1:
res = (fp*fp + f*f) % mod, (2*f+fp)*fp % mod
else:
fm = fp - f
if fm < 0:
fm += mod
res = (2*fm+f)*f % mod, (fp*fp + f*f) % mod
if n < 1000000:
cache[n] = res
return res
n, m = map(int, input().strip().split())
parents = (n+1) * [0]
children = [[] for _ in range(n+1)]
for i in range(2, n+1):
j = int(input())
parents[i] = j
children[j].append(i)
depths = (n+1) * [0]
stack = [(1, 1)]
while stack:
i, d = stack.pop()
depths[i] = d
for j in children[i]:
stack.append((j, d+1))
nrs = (n+1) * [0]
for _ in range(m):
q, si, sj = input().strip().split()
if q == 'U':
x, k = int(si), int(sj)
fibs = list(fib_pair(k))
stack = [(x, 0)]
while stack:
y, l = stack.pop()
if l >= len(fibs):
fibs.append((fibs[-1] + fibs[-2]) % mod)
nrs[y] += fibs[l]
for z in children[y]:
stack.append((z, l+1))
else:
i, j = int(si), int(sj)
if depths[i] < depths[j]:
i, j = j, i
fsum = 0
while depths[j] < depths[i]:
fsum += nrs[i]
i = parents[i]
while i != j:
fsum += nrs[i] + nrs[j]
j = parents[j]
i = parents[i]
fsum += nrs[i]
print(fsum % mod)
View More Similar Problems
Direct Connections
Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do
View Solution →Subsequence Weighting
A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =
View Solution →Kindergarten Adventures
Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti
View Solution →Mr. X and His Shots
A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M
View Solution →Jim and the Skyscrapers
Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space
View Solution →Palindromic Subsets
Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t
View Solution →