Drawing Book


Problem Statement :


A teacher asks the class to open their books to a page number. A student can either start turning pages from the front of the book or from the back of the book. They always turn pages one at a time. When they open the book, page 1 is always on the right side:

When they flip page 1, they see pages 2 and 3. Each page except the last page will always be printed on both sides. The last page may only be printed on the front, given the length of the book. If the book is n pages long, and a student wants to turn to page p, what is the minimum number of pages to turn? They can start at the beginning or the end of the book.

Given n and p, find and print the minimum number of pages that must be turned in order to arrive at page p.


Example
n = 5
p = 3

if the student wants to get to page 3, they open the book to page 1, flip 1 page and they are on the correct page. If they open the book to the last page, page 5, they turn 1 page and are at the correct page. Return 1.


Function Description

Complete the pageCount function in the editor below.

pageCount has the following parameter(s):

int n: the number of pages in the book
int p: the page number to turn to

Returns

int: the minimum number of pages to turn


Input Format

The first line contains an integer n, the number of pages in the book.
The second line contains an integer, p, the page to turn to.


Constraints
1 <= n <= 10^5
1 <= p <= n



Solution :



title-img


                            Solution in C :

python 3  :
 
#!/bin/python3

import sys


n = int(input().strip())
p = int(input().strip())
# your code goes here
print(min(p//2,n//2-(p//2)))






Java  :

import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int n = in.nextInt();
        int p = in.nextInt();
        // your code goes here
        int mid = (n + 1) / 2;
        if(p < mid) {
            System.out.println(p / 2);
        } else {
            System.out.println((n - p) / 2);
        }
    }
}











C ++  :

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <string>
#include <bitset>
#include <cstdio>
#include <limits>
#include <vector>
#include <climits>
#include <cstring>
#include <cstdlib>
#include <fstream>
#include <numeric>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <unordered_map>

using namespace std;


int main(){
    int n;
    cin >> n;
    int p;
    cin >> p;
    cout<<min(p/2,(n-p)/2);
    // your code goes here
    return 0;
}








C  :

#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <stdbool.h>

int main(){
    int n; 
    scanf("%d",&n);
    int p; 
    scanf("%d",&p);
    int ans1,ans2;
    ans1=p/2;
    ans2=(n-p)/2;
    if(ans1>ans2)
     {
     printf("%d",ans2);
     }
    else
     {
        printf("%d",ans1);
    }
        
    return 0;
}
                        








View More Similar Problems

Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

View Solution →

Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

View Solution →

Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

View Solution →

Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

View Solution →

Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from

View Solution →

Kitty's Calculations on a Tree

Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a

View Solution →