Divisibility


Problem Statement :


Two positive integers P and S  are given.
 is decimal representation of integer .
Lets define .

For example, if :

For each query you will be given two integers  and  that define a substring equal to .
Your task is to calculate divisibility of given substring.
Divisibility of given substring is equal to number of  pairs such that:
 and
 is divisible by , assuming that  is divisible by any other integer.

Timelimits

Timelimits for this challenge is given here

Input Format

First line contains two integers  and  separated by a single space.  is the number of queries.
Second line contains a big integer .
Next  lines contains two integers  and  separated by a single space each - begin and end points of substring.

Constraints

2  <=   P  <=  10^9
1000  <=  S  <=  10^100000
1  <=   Q  <=   100 000
1  <=  b  <=  e  <=  N

Output Format

Output Q  lines, the i-th line of the output should contain single integer — divisibility of the i-th query substring.



Solution :



title-img


                            Solution in C :

In    C++  :








#include <bits/stdc++.h>

#define fi first
#define se second

using namespace std;

typedef long long int Lint;
typedef pair <int,int> ii;
int N,Q,K,srt[110000],sizeLeft[110000],
sizeRight[110000],A,B,C,D=1,R[110000][35],
L[110000][35],OK[110000];
Lint num[110000],ans[110000],G[110000],
P,POW[35]; //G[x]=f( x , N )
ii query[110000];
string s;

int compare( const int &a , const int &b ){
if( query[a].fi/K != query[b].fi/K ) 
return query[a].fi < query[b].fi;
return query[a].se < query[b].se;
}

int compare2( const int &a , const int &b )
{ return G[a] < G[b]; }

int main(){

cin >> P >> Q;
cin >> s;
while( (P%2) == 0 ){ P/=2; A++; D*=2; }
while( (P%5) == 0 ){ P/=5; B++; D*=5; }
C=max( A , B );
N=s.size();
for( int i=0 ; i<N ; i++ ) num[i+1]=s[i]-'0';
K=sqrt( N );

Lint power=1;
for( int i=N ; i ; i-- ){
srt[i+1]=i+1;
G[i]=(G[i+1]+(power*num[i])%P)%P;
power=(power*10LL)%P;
}
POW[0]=1;
for( int i=1 ; i<=32 ; i++ ) POW[i]=(POW[i-1]*10)%D;
srt[1]=1;

sort( srt+1 , srt+2+N , compare2 );

for( int i=1,prev=-1,count=0 ; i<=N+1 ; i++ ){
if( G[srt[i]] !=prev  ) count++,prev=G[srt[i]];
G[srt[i]]=count;
}

for( int i=1 ; i<=N ; i++ ){
Lint md=0;
int j;
for( j=0 ; i-j && j<C ; j++ ){
md=(md+(POW[j]*num[i-j])%D)%D;
R[i+1][j+1]=R[i+1][j];
if( !md && G[i-j] == G[i+1] )
 R[i+1][j+1]++,L[i-j][j+1]++;
}
if( j == C && !md ) OK[i+1]=1;
}

for( int i=1 ; i<=N+1 ; i++ )
for( int j=0 ; i+j<=N && j<C ; j++ ) 
L[i][j+1]+=L[i][j];

for( int i=1,begin,end ; i<=Q ; i++ ){
scanf(" %d %d",&begin,&end);
query[i]=ii( begin , end );
srt[i]=i;
}
sort( srt+1 , srt+1+Q , compare );

Lint sum=0;
int left=N,right=N+5,r,l;

for( int i=1,b,e ; i<=Q ; i++ ){
b=query[srt[i]].fi,e=query[srt[i]].se+1;

if( e < right ){
r=b-C-1,l=b+C;
memset( sizeRight , 0 , sizeof sizeRight );
memset( sizeLeft , 0 , sizeof sizeLeft );
left=b,right=b-1;
sum=0;
}
for( int j=right+1 ; j<=e ; j++ , r++ ){
if( r >= left ) sizeRight[G[r]]++;
if( j-left > C && OK[j] ) sum+=
sizeRight[G[j]],sizeLeft[G[j]]++;
sum+=R[j][min(j-left,C)];
}
for( int j=left-1 ; j>=b ; j-- , l-- ){
if( OK[l] && l <= e ) sizeLeft[G[l]]++;
sum+=sizeLeft[G[j]]+L[j][min(C,e-j)];
if( e-C > j ) sizeRight[G[j]]++;
}
for( int j=left ; j<b ; j++  ){
if( l < e ){
l++;
sum-=sizeLeft[G[j]]+L[j][min(C,e-j)];
if( OK[l] ) sizeLeft[G[l]]--;
}else sum-=L[j][e-j];
if( l >= e ) l=j+C+1;
if( e-C > j ) sizeRight[G[j]]--;
}
left=b; right=e;
ans[srt[i]]=sum;
}

for( int i=1 ; i<=Q ; i++ ) printf("%lld\n",ans[i]);

return 0;

}









In    C :







#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define HASH_SIZE 123455
typedef struct _node{
int x;
int c;
struct _node *next;
} node;
void QQ(int x,int y);
void add_left(int X);
void add_right(int X);
void remove_left(int X);
void remove_right(int X);
void sort_a3(int*a,int*b,int*c,int size);
void merge3(int*a,int*left_a,int*right_a,int*b,
int*left_b,int*right_b,int*c,int*left_c,int*right_c,
int left_size,int right_size);
void insert(node **hash,int x);
void removee(node **hash,int x);
int count(node **hash,int x);
node *get();
void free_node(node *x);
char S[100001];
int cl,cr,a[100001],q1[100000],q2[100000],
y[100000],idx[100000],g1[100000][30],g2[100000]={0},
g3[100000][30],x;
long long ans[100000],tans;
node *hash1[HASH_SIZE]={0},*hash2[HASH_SIZE]={0},
pool[200000],*pool_head;

int main(){
int P,Q,N,P1,i,j;
long long t,t1;
for(i=0;i<200000;i++)
if(i!=200000-1)
pool[i].next=&pool[i+1];
else
pool[i].next=NULL;
pool_head=pool;
scanf("%d%d%s",&P,&Q,S);
N=strlen(S);
for(i=0;i<Q;i++){
scanf("%d%d",q1+i,q2+i);
q1[i]--;
q2[i]--;
}
for(i=0,x=(int)sqrt(N);i<Q;i++){
a[i]=q1[i]/x;
y[i]=q2[i];
idx[i]=i;
}
sort_a3(a,y,idx,Q);
for(x=0,P1=1;P%2==0;){
P/=2;
P1*=2;
x++;
}
for(t=0;P%5==0;){
P/=5;
P1*=5;
t++;
}
x=(x>t)?x:t;
for(i=N-1,t=1;i>=0;i--,t=t*10%P)
if(i==N-1)
a[i]=(S[i]-'0')%P;
else
a[i]=(a[i+1]+(S[i]-'0')*t)%P;
a[N]=0;
if(!x)
for(i=0;i<N;i++)
g2[i]=1;
else{
for(i=0;i<N;i++)
for(t=0,t1=1,j=0;j<x && i-j>=0;j++,t1*=10){
t=t+(S[i-j]-'0')*t1;
if(!j)
if(t%(P1*P)==0)
g1[i][j]=1;
else
g1[i][j]=0;
else
if(t%(P1*P)==0)
g1[i][j]=g1[i][j-1]+1;
else
g1[i][j]=g1[i][j-1];
}
for(i=x-1;i<N;i++){
for(t=0,j=i-x+1;j<i+1;j++)
t=t*10+S[j]-'0';
if(t%P1==0)
g2[i]=1;
}
for(i=0;i<N;i++)
for(t=0,j=0;j<x && i+j<N;j++){
t=t*10+(S[i+j]-'0');
if(!j)
if(t%(P1*P)==0)
g3[i][j]=1;
else
g3[i][j]=0;
else
if(t%(P1*P)==0)
g3[i][j]=g3[i][j-1]+1;
else
g3[i][j]=g3[i][j-1];
}
}
for(i=cl=cr=0,tans=0;i<Q;i++){
QQ(q1[idx[i]],q2[idx[i]]);
ans[idx[i]]=tans;
}
for(i=0;i<Q;i++)
printf("%lld\n",ans[i]);
return 0;
}
void QQ(int x,int y){
while(cl<x)
remove_left(cl++);
while(cl>x)
add_left(--cl);
while(cr<y+1)
add_right(cr++);
while(cr>y+1)
remove_right(--cr);
return;
}
void add_left(int X){
if(X>=cr)
return;
if(X+x<cr){
insert(hash1,a[X]);
if(g2[X+x])
insert(hash2,a[X+x+1]);
tans+=count(hash2,a[X]);
if(x)
tans+=g3[X][x-1];
}
else
tans+=g3[X][cr-X-1];
return;
}
void add_right(int X){
if(X<cl)
return;
if(X-x>=cl){
insert(hash1,a[X-x]);
if(g2[X]){
insert(hash2,a[X+1]);
tans+=count(hash1,a[X+1]);
}
if(x)
tans+=g1[X][x-1];
}
else
tans+=g1[X][X-cl];
return;
}
void remove_left(int X){
if(X>=cr)
return;
if(X+x<cr){
removee(hash1,a[X]);
tans-=count(hash2,a[X]);
if(g2[X+x])
removee(hash2,a[X+x+1]);
if(x)
tans-=g3[X][x-1];
}
else
tans-=g3[X][cr-X-1];
return;
}
void remove_right(int X){
if(X<cl)
return;
if(X-x>=cl){
if(g2[X]){
tans-=count(hash1,a[X+1]);
removee(hash2,a[X+1]);
}
if(x)
tans-=g1[X][x-1];
removee(hash1,a[X-x]);
}
else
tans-=g1[X][X-cl];
return;
}
void sort_a3(int*a,int*b,int*c,int size){
if (size < 2)
return;
int m = (size+1)/2,i;
int *left_a,*left_b,*left_c,*right_a,*right_b,*right_c;
left_a=(int*)malloc(m*sizeof(int));
right_a=(int*)malloc((size-m)*sizeof(int));
left_b=(int*)malloc(m*sizeof(int));
right_b=(int*)malloc((size-m)*sizeof(int));
left_c=(int*)malloc(m*sizeof(int));
right_c=(int*)malloc((size-m)*sizeof(int));
for(i=0;i<m;i++){
left_a[i]=a[i];
left_b[i]=b[i];
left_c[i]=c[i];
}
for(i=0;i<size-m;i++){
right_a[i]=a[i+m];
right_b[i]=b[i+m];
right_c[i]=c[i+m];
}
sort_a3(left_a,left_b,left_c,m);
sort_a3(right_a,right_b,right_c,size-m);
merge3(a,left_a,right_a,b,left_b,right_b,c,
left_c,right_c,m,size-m);
free(left_a);
free(right_a);
free(left_b);
free(right_b);
free(left_c);
free(right_c);
return;
}
void merge3(int*a,int*left_a,int*right_a,
int*b,int*left_b,int*right_b,int*c,
int*left_c,int*right_c,int left_size,
int right_size){
int i = 0, j = 0;
while (i < left_size|| j < right_size) {
if (i == left_size) {
a[i+j] = right_a[j];
b[i+j] = right_b[j];
c[i+j] = right_c[j];
j++;
} else if (j == right_size) {
a[i+j] = left_a[i];
b[i+j] = left_b[i];
c[i+j] = left_c[i];
i++;
} else if (left_a[i] == right_a[j]) {
if(left_b[i]<=right_b[j]){
a[i+j] = left_a[i];
b[i+j] = left_b[i];
c[i+j] = left_c[i];
i++;
}
else{
a[i+j] = right_a[j];
b[i+j] = right_b[j];
c[i+j] = right_c[j];
j++;
}
} else if (left_a[i] < right_a[j]) {
a[i+j] = left_a[i];
b[i+j] = left_b[i];
c[i+j] = left_c[i];
i++;
} else {
a[i+j] = right_a[j];
b[i+j] = right_b[j];
c[i+j] = right_c[j];
j++;
}
}
return;
}
void insert(node **hash,int x){
node *t=hash[x%HASH_SIZE];
while(t){
if(t->x==x){
t->c++;
return;
}
t=t->next;
}
t=get();
t->x=x;
t->c=1;
t->next=hash[x%HASH_SIZE];
hash[x%HASH_SIZE]=t;
return;
}
void removee(node **hash,int x){
node *t=hash[x%HASH_SIZE],*p=NULL;
while(t){
if(t->x==x){
t->c--;
return;
}
p=t;
t=t->next;
}
return;
}
int count(node **hash,int x){
node *t=hash[x%HASH_SIZE];
while(t){
if(t->x==x)
return t->c;
t=t->next;
}
return 0;
}
node *get(){
node *res=pool_head;
if(pool_head)
pool_head=pool_head->next;
return res;
}
void free_node(node *x){
x->next=pool_head;
pool_head=x;
return;
}
                        








View More Similar Problems

Equal Stacks

ou have three stacks of cylinders where each cylinder has the same diameter, but they may vary in height. You can change the height of a stack by removing and discarding its topmost cylinder any number of times. Find the maximum possible height of the stacks such that all of the stacks are exactly the same height. This means you must remove zero or more cylinders from the top of zero or more of

View Solution →

Game of Two Stacks

Alexa has two stacks of non-negative integers, stack A = [a0, a1, . . . , an-1 ] and stack B = [b0, b1, . . . , b m-1] where index 0 denotes the top of the stack. Alexa challenges Nick to play the following game: In each move, Nick can remove one integer from the top of either stack A or stack B. Nick keeps a running sum of the integers he removes from the two stacks. Nick is disqualified f

View Solution →

Largest Rectangle

Skyline Real Estate Developers is planning to demolish a number of old, unoccupied buildings and construct a shopping mall in their place. Your task is to find the largest solid area in which the mall can be constructed. There are a number of buildings in a certain two-dimensional landscape. Each building has a height, given by . If you join adjacent buildings, they will form a solid rectangle

View Solution →

Simple Text Editor

In this challenge, you must implement a simple text editor. Initially, your editor contains an empty string, S. You must perform Q operations of the following 4 types: 1. append(W) - Append W string to the end of S. 2 . delete( k ) - Delete the last k characters of S. 3 .print( k ) - Print the kth character of S. 4 . undo( ) - Undo the last (not previously undone) operation of type 1 or 2,

View Solution →

Poisonous Plants

There are a number of plants in a garden. Each of the plants has been treated with some amount of pesticide. After each day, if any plant has more pesticide than the plant on its left, being weaker than the left one, it dies. You are given the initial values of the pesticide in each of the plants. Determine the number of days after which no plant dies, i.e. the time after which there is no plan

View Solution →

AND xor OR

Given an array of distinct elements. Let and be the smallest and the next smallest element in the interval where . . where , are the bitwise operators , and respectively. Your task is to find the maximum possible value of . Input Format First line contains integer N. Second line contains N integers, representing elements of the array A[] . Output Format Print the value

View Solution →