Direct Connections
Problem Statement :
Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) doesn't know anything about the modern telecom technologies, except for peer-to-peer connections. Even worse, his thoughts on peer-to-peer connections are extremely faulty: he believes that, if Pi people are living in city i , there must be at least cables from city to every other city of EV - this way he can guarantee no congestion will ever occur! Mr. Treat hires you to find out how much cable they need to implement this telecommunication system, given the coordination of the cities and their respective population. Note that The connections between the cities can be shared. Look at the example for the detailed explanation. Input Format A number T is given in the first line and then comes T blocks, each representing a scenario. Each scenario consists of three lines. The first line indicates the number of cities (N). The second line indicates the coordinates of the N cities. The third line contains the population of each of the cities. The cities needn't be in increasing order in the input. Output Format For each scenario of the input, write the length of cable needed in a single line modulo 1, 000, 000, 007. Constraints 1 <= T <= 20 1 <= N <= 200,000 Pi <= 10,000 Border to border length of the country <= 1, 000, 000, 000
Solution :
Solution in C :
In C ++ :
#include <vector>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <string>
#include <string.h>
#define pb push_back
#define mp make_pair
#define SS(a,b) scanf("%d%d",&a,&b);
#define S(a) scanf("%d",&a);
#define SSL(a,b) scanf("%lld%lld",&a,&b);
#define SL(a) scanf("%lld",&a);
#define SSS(a,b,c) scanf("%d %d %d",&a,&b,&c);
#define GI ({int t;scanf("%d",&t);t;})
#define GL ({ll t;scanf("%lld",&t);t;})
#define MAXN 500000
#define FOR(i,a,n) for(int i=a;i<n;i++)
#define REP(i,n) FOR(i,0,n)
#define INPUT freopen("input.txt","r",stdin);
#define OUTPUT freopen("output1.txt","w",stdout);
#define disvec(v) { for(int vec_index=0;vec_index<v.size();vec_index++) cout<<v[vec_index]<<" "; cout<<endl;}
using namespace std;
typedef long long LL;
typedef long long ll;
pair<LL,LL>input[200100];
map<LL,int>m;
LL DistBIT[200100];
LL SumBIT[200100];
LL MOD=1000000007LL;
int maxval=200010;
void init(){
REP(i,200100)DistBIT[i]=SumBIT[i]=0;
}
void update_Dist(int idx,LL val){
while(idx<=maxval){
DistBIT[idx]=(DistBIT[idx]+val);
idx+=(idx & -idx);
}
}
void update_Sum(int idx,LL val){
while(idx<=maxval){
SumBIT[idx]=(SumBIT[idx]+val)%MOD;
idx+=(idx & -idx);
}
}
LL query_cnt(int idx){
LL res=0;
while(idx>0){
res=(res+SumBIT[idx]);
idx-=(idx & -idx);
}
return res;
}
LL QUERY_cnt(int start,int end){
if(start>end)return 0;
return (query_cnt(end)-query_cnt(start-1));
}
LL query_Dist(int idx){
LL res=0;
while(idx>0){
res=(res+DistBIT[idx]);
idx-=(idx & -idx);
}
return res;
}
LL QUERY_Dist(int start, int end){
if(start>end)return 0;
return (query_Dist(end)-query_Dist(start-1));
}
pair<LL,LL>Mapp[200100];
int main(){
int t=GI;
while(t--){
init();
int n=GI;
m.clear();
REP(i,n){scanf("%lld",&input[i].second);}
REP(i,n){scanf("%lld",&input[i].first);}
REP(i,n){
Mapp[i].first=input[i].second;
Mapp[i].second=input[i].first;
}
sort(Mapp,Mapp+n);
int total=2;
REP(i,n)m[Mapp[i].first]=total,total++;
sort(input,input+n);
LL ans=0;
update_Dist(m[input[0].second],input[0].second);
update_Sum(m[input[0].second],1);
for(int i=1;i<n;i++){
LL xi=input[i].second;
LL curmapped=m[input[i].second];
LL Leftcnt=QUERY_cnt(1,curmapped-1);
LL Rightcnt=QUERY_cnt(curmapped+1,total+2);
LL LeftDist=QUERY_Dist(1,curmapped-1);
LL RightDist=QUERY_Dist(curmapped+1,total+2);
LL Tempans=xi*(Leftcnt-Rightcnt);
Tempans-=LeftDist;
Tempans+=RightDist;
Tempans=(Tempans*input[i].first)%MOD;
ans=(ans+Tempans)%MOD;
update_Dist(curmapped,xi);
update_Sum(curmapped,1);
}
cout<<(ans+MOD)%MOD<<endl;
}
GI;
return 0;
}
In Java :
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
public class DirectConnection {
static final class IO {
//Standard IO
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer tokenizer = null;
static int ni() {
return Integer.parseInt(ns());
}
static long nl() {
return Long.parseLong(ns());
}
static double nd() {
return Double.parseDouble(ns());
}
static String ns() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(br.readLine());
} catch (IOException e) {
}
}
return tokenizer.nextToken();
}
static String nline() {
tokenizer = null;
String ret = null;
try {
ret = br.readLine();
} finally {
return ret;
}
}
}
static final class City {
int i;
int cordinate;
int cable;
}
static class FenwickTree {
static long MOD = 1000000000 + 7;
public static void update(long[] arr, int pos, int val)
{
int len = arr.length;
for (; pos < len; pos |= (pos + 1))
arr[pos] = (arr[pos] + val + MOD) % MOD;
}
/** Function to query **/
public static long query(long[] arr, int pos)
{
long sum = 0;
for (; pos >= 0; pos = (pos & (pos + 1)) - 1)
sum = (arr[pos] + sum + MOD) % MOD;
return sum;
}
}
static long f(City[] cityCor) {
Arrays.sort(cityCor, new Comparator<City>() {
@Override
public int compare(City o1, City o2) {
return Integer.compare(o1.cordinate, o2.cordinate);
}
});
long[] iList = new long[cityCor.length];
long[] cord = new long[cityCor.length];
long[] cable = new long[cityCor.length];
for (int i = 0; i < cityCor.length; i++) {
cityCor[i].i = i;
FenwickTree.update(cord, i, cityCor[i].cordinate);
FenwickTree.update(cable, i, cityCor[i].cable);
FenwickTree.update(iList, i, 1);
}
Arrays.sort(cityCor, new Comparator<City>() {
@Override
public int compare(City o1, City o2) {
return Integer.compare(o2.cable, o1.cable);
}
});
long sum = 0;
for (City c : cityCor) {
sum = (sum + g(c, iList, cord)) % FenwickTree.MOD;
//System.out.println(c.cable + "--" + sum);
FenwickTree.update(iList, c.i, -1);
FenwickTree.update(cord, c.i, -1 * c.cordinate);
}
return sum;
}
private static long g(City c, long[] iList, long[] cord) {
long MOD = FenwickTree.MOD;
int i = c.i;
long l = FenwickTree.query(cord, i);
long n = FenwickTree.query(cord, cord.length - 1);
n = (n - l + FenwickTree.MOD) % FenwickTree.MOD;
//System.out.println(i + "&& " + l + "." + n);
long li = FenwickTree.query(iList, i);
long ni = FenwickTree.query(iList, iList.length - 1);
ni = (ni - li + FenwickTree.MOD) % FenwickTree.MOD;
//System.out.println(i + "|| " + li + "." + ni);
long cc = (((c.cordinate * li - l + MOD) % MOD) * c.cable) % MOD;
long nn = (((n - c.cordinate * ni + MOD) % MOD) * c.cable) % MOD;
return (cc + nn) % MOD;
}
public static void main(String[] argv) {
int T = IO.ni();
for (int t = 0; t < T; t++) {
int N = IO.ni();
City[] citArr = new City[N];
for (int i = 0; i < N; i++) {
citArr[i] = new City();
citArr[i].cordinate = IO.ni();
}
for (int i = 0; i < N; i++) {
citArr[i].cable = IO.ni();
}
System.out.println(f(citArr));
}
}
}
In C :
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
struct node {
long int c, p;
};
struct node a[200000];
#define MOD(x) ((x) < 0 ? -(x) : (x))
#define MODULO(x) ((x) > 1000000007 ? (x) % 1000000007 : (x))
int cmp(void *a, void *b)
{
return ((struct node *)b)->p - ((struct node *)a)->p;
}
int main() {
long int n, t, i, j, tot, ans;
scanf("%ld", &t);
while (t--) {
scanf("%ld", &n);
tot = 0;
for(i = 0; i < n; i++) {
scanf("%ld", &a[i].c);
//tot += c;
}
for(i = 0; i < n; i++) {
scanf("%ld", &a[i].p);
}
qsort(a, n, sizeof(a[0]), (__compar_fn_t)cmp);
ans = 0;
for(i = 0; i < n; i++) {
tot = 0;
for(j = i+1; j < n; j++)
tot += MOD(a[j].c - a[i].c);
ans += MODULO(tot) * MODULO(a[i].p);
ans = MODULO(ans);
}
printf("%ld\n", ans);
}
return 0;
}
In Python3 :
class fenpiece:
__slots__ = ['x','p','px','c']
def __init__(self,x=0,p=0,px=0,c=0):
self.x = x
self.p = p
self.px = px
self.c = c
def __iadd__(self,other):
self.x += other.x
self.p += other.p
self.px += other.px
self.c += other.c
return self
def __radd__(self,other):
return fenpiece(self.x,self.p,self.px,self.c)
def __sub__(self,other):
return fenpiece(self.x-other.x,self.p-other.p,self.px-other.px,self.c-other.c)
def fensum(seq,i):
sum = 0
while i:
sum += seq[i-1]
i -= i&-i
return sum
def fensumrange(seq,i,j):
return fensum(seq,j) - fensum(seq,i)
def fenadd(seq,i,v):
i += 1
bound = len(seq) + 1
while i < bound:
seq[i-1] += v
i += i&-i
pBound = 10001
magicmod = 1000000007
fenlist = [fenpiece() for i in range(pBound)]
T = int(input())
for t in range(T):
total = 0
N = int(input())
X = [int(s) for s in input().split()]
P = [int(s) for s in input().split()]
cities = sorted(zip(X,P))
cable = 0
for x,p in cities:
underP = fensum(fenlist,p)
overP = fensumrange(fenlist,p,pBound)
cable = (cable + p*(underP.c*x - underP.x) + overP.p*x - overP.px)%magicmod
fenadd(fenlist,p,fenpiece(x,p,x*p,1))
print(cable)
for f in fenlist:f.__init__()
View More Similar Problems
2D Array-DS
Given a 6*6 2D Array, arr: 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 An hourglass in A is a subset of values with indices falling in this pattern in arr's graphical representation: a b c d e f g There are 16 hourglasses in arr. An hourglass sum is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in arr, then print t
View Solution →Dynamic Array
Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.
View Solution →Left Rotation
A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d
View Solution →Sparse Arrays
There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun
View Solution →Array Manipulation
Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu
View Solution →Print the Elements of a Linked List
This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode
View Solution →