# collections.Counter() python

### Problem Statement :

```collections.Counter()
A counter is a container that stores elements as dictionary keys, and their counts are stored as dictionary values.

Sample Code

>>> from collections import Counter
>>>
>>> myList = [1,1,2,3,4,5,3,2,3,4,2,1,2,3]
>>> print Counter(myList)
Counter({2: 4, 3: 4, 1: 3, 4: 2, 5: 1})
>>>
>>> print Counter(myList).items()
[(1, 3), (2, 4), (3, 4), (4, 2), (5, 1)]
>>>
>>> print Counter(myList).keys()
[1, 2, 3, 4, 5]
>>>
>>> print Counter(myList).values()
[3, 4, 4, 2, 1]

Raghu is a shoe shop owner. His shop has X number of shoes.
He has a list containing the size of each shoe he has in his shop.
There are N number of customers who are willing to pay xi amount of money only if they get the shoe of their desired size.

Input Format

The first line contains X, the number of shoes.
The second line contains the space separated list of all the shoe sizes in the shop.
The third line contains N, the number of customers.
The next N lines contain the space separated values of the shoe size desired by the customer and xi, the price of the shoe.

Constraints
0<X<10^3
0<N<=10^3
20<xi<100
2<shoe size<20

Output Format

Print the amount of money earned by Raghu.```

### Solution :

```                            ```Solution in C :

from collections import Counter
x = int(input())
sizes = list(map(int,input().split()))
n = int(input())
sizes = Counter(sizes)
pr = 0
for i in range(n):
sz,pz = map(int,input().split())
if(sizes[sz]):
sizes[sz] -= 1
pr += pz
print(pr)```
```

## Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do

## Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

## Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

## Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

## Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t