C++ Class Template Specialization


Problem Statement :


You are given a main function which reads the enumeration values for two different types as input, then prints out the corresponding enumeration names. Write a class template that can provide the names of the enumeration values for both types. If the enumeration value is not valid, then print unknown.

Input Format

The first line contains t , the number of test cases.
Each of the t subsequent lines contains two space-separated integers. The first integer is a color value, c, and the second integer is a fruit value, f.

Constraints

   1 <=  t  <= 100
   -2 x 10^9 <=  c  <= 2 x 10^9
   -2 x 10^9 <=  f   <= 2 x 10^9

Output Format

The locked stub code in your editor prints t lines containing the color name and the fruit name corresponding to the input enumeration index.



Solution :



title-img


                            Solution in C :

#include <string>

template <typename T> struct Traits
{
    static std::string name(int index) { return "unknown"; }
};

template<> struct Traits<Fruit>
{
    static std::string name(int index)
    {
        switch((Fruit)index) {
        case Fruit::apple:      return "apple";
        case Fruit::orange:     return "orange";
        case Fruit::pear:       return "pear";
        default:                return "unknown";
        }
    }
};

template<> struct Traits<Color>
{
    static std::string name(int index)
    {
        switch((Color)index) {
        case Color::red:        return "red";
        case Color::green:      return "green";
        case Color::orange:     return "orange";
        default:                return "unknown";
        }
    }
};
                        








View More Similar Problems

Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

View Solution →

Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

View Solution →

Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

View Solution →

Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

View Solution →

Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from

View Solution →

Kitty's Calculations on a Tree

Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a

View Solution →