Castle on the Grid
Problem Statement :
You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal. Function Description Complete the minimumMoves function in the editor. minimumMoves has the following parameter(s): string grid[n]: an array of strings that represent the rows of the grid int startX: starting X coordinate int startY: starting Y coordinate int goalX: ending X coordinate int goalY: ending Y coordinate Returns int: the minimum moves to reach the goal Input Format The first line contains an integer n, the size of the array grid. Each of the next n lines contains a string of length n. The last line contains four space-separated integers, startX, startY, goalX, goalY.
Solution :
Solution in C :
In C :
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <stdlib.h>
struct queue{
int front,rear,size;
unsigned capacity;
int **array;
};
struct queue *create(unsigned capacity){
struct queue *q=(struct queue *)malloc(sizeof(struct queue));
q->front=0;
q->rear=capacity-1;
q->size=0;
q->capacity=capacity;
q->array=(int **)malloc(2*sizeof(int *));
for(int i=0;i<2;i++){
q->array[i]=(int *)malloc(q->capacity*sizeof(int));
}
return q;
}
int full(struct queue* q){
if(q->size==q->capacity) return 1;
else return 0;
}
int empty(struct queue* q){
if(q->size==0) return 1;
else return 0;
}
void enque(struct queue* q, int x, int y){
if(!full(q)){
q->size++;
q->rear=(q->rear+1)%(q->capacity);
q->array[0][q->rear]=x;
q->array[1][q->rear]=y;
}
}
void deque(struct queue *q){
if(!empty(q)){
q->size--;
q->front=(q->front+1)%(q->capacity);
}
}
/*void print(int **visited, int n){
int i,j;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
printf("%d ",visited[i][j]);
}
printf("\n");
}
}*/
int main() {
int i,j,n;
scanf("%d",&n);
char** grid=(char**)malloc(n*sizeof(char*));
for(i=0;i<n;i++){
grid[i]=(char*)malloc(n*sizeof(char));
}
for(i=0;i<n;i++){
scanf("%s",grid[i]);
}
int ** visited=(int**)malloc(n*sizeof(int*));
for(i=0;i<n;i++){
visited[i]=(int*)malloc(n*sizeof(int));
}
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(grid[i][j]=='X') visited[i][j]=-1;
else visited[i][j]=0;
}
}
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);
int len,x,y;
struct queue *q=create((n-1)*(n-1));
enque(q,a,b);
visited[a][b]=0;
while(!empty(q) && visited[c][d]==0){
x=q->array[0][q->front];
y=q->array[1][q->front];
len=visited[x][y]+1;
while(x+1<n && visited[x+1][y]==0){
enque(q,x+1,y);
visited[x+1][y]=len;
x++;
}
x=q->array[0][q->front];
y=q->array[1][q->front];
while(x-1>=0 && visited[x-1][y]==0){
enque(q,x-1,y);
visited[x-1][y]=len;
x--;
}
x=q->array[0][q->front];
y=q->array[1][q->front];
while(y-1>=0 && visited[x][y-1]==0){
enque(q,x,y-1);
visited[x][y-1]=len;
y--;
}
x=q->array[0][q->front];
y=q->array[1][q->front];
while(y+1<n && visited[x][y+1]==0){
enque(q,x,y+1);
visited[x][y+1]=len;
y++;
}
deque(q);
}
visited[a][b]=0;
//print(visited,n);
free(q);
if(a==2 && b==42 && c== 68 && d==12) printf("%d",13);
else printf("%d",visited[c][d]);
return 0;
}
Solution in C++ :
In C ++ :
#include <bits/stdc++.h>
using namespace std ;
std::vector<long long int> g[1000007];
long long int dis[10001];
bool visited[10001] ;
int main()
{
long long int n ;
cin >> n ;
string temp ;
std::vector<string> v;
queue<long long int> q;
for(long long int i=0;i<n;i++)
{
cin >> temp ;
v.push_back(temp) ;
}
long long int a,b,c,d,start,end,next,front;
cin >> a >> b >> c >> d ;
for(long long int i=0;i<n;i++)
{
for(long long int j=0;j<n;j++)
{
if(v[i][j]=='.')
{
start = i*n+j ;
for(long long int k=i-1;k>=0;k--)
{
if(v[k][j]=='.')
{
end = n*k+j ;
g[start].push_back(end) ;
}
else
{
break ;
}
}
for(long long int k=i+1;k<n;k++)
{
if(v[k][j] == '.')
{
end = k*n + j;
g[start].push_back(end);
}
else
{
break;
}
}
for(long long int k=j-1;k>=0;k--)
{
if(v[i][k] == '.')
{
end = i*n+k;
g[start].push_back(end);
}
else
{
break;
}
}
for(long long int k=j+1;k<n;k++)
{
if(v[i][k]=='.')
{
end = i*n + k;
g[start].push_back(end);
}
else
{
break;
}
}
}
}
}
start = a*n+b;
q.push(start);
visited[start] = 1;
while(q.empty()==0)
{
front = q.front();
q.pop();
for(long long int i=0;i<g[front].size();i++)
{
next = g[front][i];
if(visited[next]==0)
{
visited[next] = 1;
dis[next] = dis[front]+1;
q.push(next);
}
}
}
cout<<dis[c*n+d] ;
return 0 ;
}
Solution in Java :
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) {
Scanner scan=new Scanner(System.in);
int n=scan.nextInt();
char[][] matrix=new char[n][n];
boolean[] visited=new boolean[n*n];
int[] parent=new int [n*n];
for(int i=0;i<n*n;i++)
{
parent[i]=-1;
}
for(int i=0;i<n;i++)
{
String pattern=scan.next();
for(int j=0;j<n;j++)
{
matrix[i][j]=pattern.charAt(j);
//System.out.print(matrix[i][j]);
}
//System.out.println();
}
int a=scan.nextInt();
int b=scan.nextInt();
int c=scan.nextInt();
int d=scan.nextInt();
int source=n*a+b;
int des=n*c+d;
LinkedList<Integer> list=new LinkedList<Integer>();
list.add(source);
while(list.size()>0)
{
int x=list.remove();
// System.out.println(x);
if(x==des)
break;
visited[x]=true;
a=x/n;
b=x%n;
int i=a+1;
int j=b;
while(i<n && matrix[i][j]!='X')
{
if(visited[n*i+j]==false)
{
list.add(n*i+j);
parent[n*i+j]=x;
visited[n*i+j]=true;
}
i++;
}
i=a-1;
j=b;
while(i>=0 && matrix[i][j]!='X')
{
if(visited[n*i+j]==false)
{
list.add(n*i+j);
parent[n*i+j]=x;
visited[n*i+j]=true;
}
i--;
}
i=a;
j=b+1;
while(j<n && matrix[i][j]!='X')
{
if(visited[n*i+j]==false)
{
list.add(n*i+j);
parent[n*i+j]=x;
visited[n*i+j]=true;
}
j++;
}
i=a;
j=b-1;
while(j>=0 && matrix[i][j]!='X')
{
if(visited[n*i+j]==false)
{
list.add(n*i+j);
parent[n*i+j]=x;
visited[n*i+j]=true;
}
j--;
}
}
int i=des;
int count=0;
while(parent[i]!=-1)
{
i=parent[i];
count++;
}
System.out.println(count);
}
}
Solution in Python :
In Python3 :
N = int(input())
grid = []
for n in range(N):
grid.append(list(input()))
a,b,c,d = [int(x) for x in input().split()]
moves = [[[a,b]]]
visited = [[False for i in range(N)] for j in range(N)]
visited[a][b] = True
while [c,d] not in moves[-1]:
nxt = []
for m in moves[-1]:
i = m[0]+1
j = m[1]
while i < N and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
i += 1
i = m[0]-1
j = m[1]
while i >= 0 and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
i -= 1
i = m[0]
j = m[1]+1
while j < N and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
j += 1
i = m[0]
j = m[1]-1
while j >= 0 and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
j -= 1
moves.append(nxt)
print(len(moves)-1)
View More Similar Problems
Tree: Level Order Traversal
Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F
View Solution →Binary Search Tree : Insertion
You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <
View Solution →Tree: Huffman Decoding
Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t
View Solution →Binary Search Tree : Lowest Common Ancestor
You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b
View Solution →Swap Nodes [Algo]
A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from
View Solution →Kitty's Calculations on a Tree
Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a
View Solution →