Java 1D Array (Part 2)


Problem Statement :


Let's play a game on an array! You're standing at index 0 of an n-element array named game. From some index i (where 0<=i<n), you can perform one of the following moves:
    Move Backward: If cell i-1 exists and contains a 0, you can walk back to cell i-1.
    Move Forward:
       If cell i+1 contains a zero, you can walk to cell i+1.
       If cell i+leap contains a zero, you can jump to cell i+leap.
       If you're standing in cell n-1 or the value of i+leap>=n, you can walk or jump off the end of the array and win the game.
In other words, you can move from index i to index i+1, i-1, or i+leap as long as the destination index is a cell containing a 0. If the destination index is greater than n-1, you win the game.

Given leap and game, complete the function in the editor below so that it returns true if you can win the game (or false if you cannot).

Input Format

The first line contains an integer, , denoting the number of queries (i.e., function calls).
The 2.q subsequent lines describe each query over two lines:
   1.The first line contains two space-separated integers describing the respective values of n and leap.
   2.The second line contains n space-separated binary integers (i.e., zeroes and ones) describing the respective values of game1,game1,...,game n-1.
Constraints

1<=q<=5000
2<=n<100
0<-leap<=100
It is guaranteed that the value of game[0] is always 0.

Output Format

Return true if you can win the game; otherwise, return false.



Solution :



title-img


                            Solution in C :

import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int t = Integer.parseInt(scanner.nextLine());
        for (int i = 0; i < t; i++) {
            int n = scanner.nextInt();
            int m = scanner.nextInt();
            int[] arr = new int[n];
            for (int j = 0; j < n; j++) {
                arr[j] = scanner.nextInt();
            }
            solve(n,m,arr);
        }
    }
    
    public static void solve(int n, int m, int[] arr) {
        if (solve(n,m,arr,new boolean[n],0)) {
            System.out.println("YES");
        } else {
            System.out.println("NO");
        }
    }
    
    public static boolean solve(int n, int m, int[] arr, boolean[] visited, int curr) {
        if (curr + m >= n || curr + 1 == n) {
            return true;
        }
        
        boolean[] newVisited = new boolean[n];
        for (int i = 0; i < n; i++) {
            newVisited[i] = visited[i];
        }
        
        boolean s = false;
        if (!visited[curr+1] && arr[curr+1] == 0) {
            newVisited[curr+1] = true;
            s = solve(n,m,arr,newVisited,curr+1);
        }
        if (s) {
            return true;
        }
        if (m > 1 && arr[curr+m] == 0 && !visited[curr+m]) {
            newVisited[curr+m] = true;
            s = solve(n,m,arr,newVisited,curr+m);
        }
        if (s) {
            return true;
        }
        if (curr > 0 && arr[curr-1] == 0 && !visited[curr-1]) {
            newVisited[curr-1] = true;
            s = solve(n,m,arr,newVisited,curr-1); 
        }
        return s;
    }
}
                        








View More Similar Problems

No Prefix Set

There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio

View Solution →

Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

View Solution →

Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do

View Solution →

Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

View Solution →

Kindergarten Adventures

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

View Solution →

Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

View Solution →