Walled Off π½ - Google Top Interview Questions
Problem Statement :
You are given a two-dimensional integer matrix containing 0s and 1s where 0 represents empty space and 1 represents a wall. Return the minimum number cells that need to become walls such that there's no path from the top left cell to the bottom right cell. You cannot put walls on the top left cell and the bottom right cell. You are only allowed to travel adjacently (no diagonal moves allowed), and you can't leave the matrix. Constraints 2 β€ n, m β€ 250 where n and m are the number of rows and columns in matrix Example 1 Input matrix = [ [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0] ] Output 1 Explanation We can put a wall on either matrix[2][0], matrix[2][1], matrix[1][0] or matrix[2][2].
Solution :
Solution in C++ :
struct Edge {
int u, v;
int cap, flow;
Edge() {
}
Edge(int u, int v, int cap) : u(u), v(v), cap(cap), flow(0) {
}
};
struct Dinic {
int N;
vector<Edge> E;
vector<vector<int>> g;
vector<int> d, pt;
Dinic(int N) : N(N), E(0), g(N), d(N), pt(N) {
}
void AddEdge(int u, int v, int cap) {
if (u != v) {
E.emplace_back(u, v, cap);
g[u].emplace_back(E.size() - 1);
E.emplace_back(v, u, 0);
g[v].emplace_back(E.size() - 1);
}
}
bool BFS(int S, int T) {
queue<int> q({S});
fill(d.begin(), d.end(), N + 1);
d[S] = 0;
while (!q.empty()) {
int u = q.front();
q.pop();
if (u == T) break;
for (int k : g[u]) {
Edge &e = E[k];
if (e.flow < e.cap && d[e.v] > d[e.u] + 1) {
d[e.v] = d[e.u] + 1;
q.emplace(e.v);
}
}
}
return d[T] != N + 1;
}
int DFS(int u, int T, int flow = -1) {
if (u == T || flow == 0) return flow;
for (int &i = pt[u]; i < g[u].size(); ++i) {
Edge &e = E[g[u][i]];
Edge &oe = E[g[u][i] ^ 1];
if (d[e.v] == d[e.u] + 1) {
int amt = e.cap - e.flow;
if (flow != -1 && amt > flow) amt = flow;
if (int pushed = DFS(e.v, T, amt)) {
e.flow += pushed;
oe.flow -= pushed;
return pushed;
}
}
}
return 0;
}
int MaxFlow(int S, int T) {
int total = 0;
while (BFS(S, T)) {
fill(pt.begin(), pt.end(), 0);
while (int flow = DFS(S, T)) total += flow;
}
return total;
}
};
Dinic *dinic;
int solve(vector<vector<int>> &g) {
int r = g.size();
int c = g[0].size();
dinic = new Dinic(2 * r * c);
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
if (g[i][j]) continue;
dinic->AddEdge(i * c + j, i * c + j + r * c, 1);
int dx[4]{-1, 0, 1, 0};
int dy[4]{0, -1, 0, 1};
for (int k = 0; k < 4; k++) {
int nx = i + dx[k];
int ny = j + dy[k];
if (nx >= 0 && nx < r && ny >= 0 && ny < c && g[nx][ny] == 0) {
dinic->AddEdge(i * c + j + r * c, nx * c + ny, 1);
}
}
}
}
int ret = dinic->MaxFlow(r * c, r * c - 1);
delete dinic;
return ret;
}
Solution in Java :
import java.util.*;
class Solution {
int[][] dir = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
public int solve(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
if (!dfs(matrix, 0, 0, m, n))
return 0;
if (!dfs(matrix, 0, 0, m, n))
return 1;
return 2;
}
private boolean dfs(int[][] g, int x, int y, int m, int n) {
if (x == m - 1 && y == n - 1)
return true;
g[x][y] = 1;
for (int[] d : dir) {
int a = x + d[0], b = y + d[1];
if (a >= 0 && a < m && b >= 0 && b < n && g[a][b] == 0) {
if (dfs(g, a, b, m, n))
return true;
}
}
return false;
}
}
Solution in Python :
class Solution:
def solve(self, matrix):
R = len(matrix)
C = len(matrix[0])
def get_neighbors(i, j):
for ii, jj in ((i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)):
if 0 <= ii < R and 0 <= jj < C and matrix[ii][jj] == 0:
yield ii, jj
visited = set()
tin = {}
low = {}
timer = 0
articulation_points = set()
prev = {}
source = (0, 0)
target = (R - 1, C - 1)
def dfs(v, parent):
nonlocal timer
visited.add(v)
prev[v] = parent
tin[v] = timer
low[v] = timer
timer += 1
children = 0
for to in get_neighbors(*v):
if to == parent:
continue
if to in visited:
low[v] = min(low[v], tin[to])
else:
dfs(to, v)
low[v] = min(low[v], low[to])
if low[to] >= tin[v] and parent is not None:
articulation_points.add(v)
children += 1
if parent is None and children > 1:
articulation_points.add(v)
def bfs(root):
Q = deque([root])
visited = set([root])
while Q:
v = Q.pop()
if v == target:
return True
for w in get_neighbors(*v):
if w not in visited:
visited.add(w)
Q.appendleft(w)
return False
dfs(source, None)
if target not in prev:
return 0
for i, j in articulation_points:
matrix[i][j] = 1
if bfs(source):
return 2
return 1
View More Similar Problems
Tree Coordinates
We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For
View Solution βArray Pairs
Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .
View Solution βSelf Balancing Tree
An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ
View Solution βArray and simple queries
Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty
View Solution βMedian Updates
The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o
View Solution βMaximum Element
You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each
View Solution β