Super Maximum Cost Queries
Problem Statement :
Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and R, such that L <= R . For each query, she wants to print the number of different paths in T that have a cost, C , in the inclusive range [ L , R ] . It should be noted that path from some node X to some other node Y is considered same as path from node Y to X i.e { X, Y }is same as { Y, X } . Input Format The first line contains 2 space-separated integers, N (the number of nodes) and Q (the number of queries), respectively. Each of the N -1 subsequent lines contain 3 space-separated integers, U , V , and W, respectively, describing a bidirectional road between nodes U and V which has weight W. The Q subsequent lines each contain 2 space-separated integers denoting L and R. Constraints 1 <= N, Q < = 10 ^5 1 <= U, V <= N 1 <= W <= 10 ^ 9 1 <= L <= R <= 10^9 Output Format For each of the Q queries, print the number of paths in T having cost C in the inclusive range [ L, R ] on a new line.
Solution :
Solution in C :
In C++ :
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<cassert>
#define PB push_back
#define MP make_pair
#define sz(v) (in((v).size()))
#define forn(i,n) for(in i=0;i<(n);++i)
#define forv(i,v) forn(i,sz(v))
#define fors(i,s) for(auto i=(s).begin();i!=(s).end();++i)
#define all(v) (v).begin(),(v).end()
using namespace std;
typedef long long in;
typedef vector<in> VI;
typedef vector<VI> VVI;
struct unifnd{
VI ht,pr,ss;
in fnd(in a){
in ta=a;
while(a!=pr[a])a=pr[a];
in tt=ta;
while(ta!=a){
tt=pr[ta];
pr[ta]=a;
ta=tt;
}
return a;
}
in uni(in a, in b){
a=fnd(a);
b=fnd(b);
if(a==b)return 0;
if(ht[b]<ht[a])swap(a,b);
pr[a]=b;
in r=ss[a]*ss[b];
ss[b]+=ss[a];
ht[b]+=(ht[a]==ht[b]);
return r;
}
void ini(in n){
ht.resize(n);
pr.resize(n);
ss.resize(n);
forn(i,n){
ht[i]=0;
ss[i]=1;
pr[i]=i;
}
}
};
VI ans;
unifnd cf;
struct ev{
in typ,u,v,w;
ev(in a=0, in b=0, in c=0, in d=0){
typ=a;
u=b;
v=c;
w=d;
}
bool operator<(const ev cp)const{
if(w!=cp.w)
return w<cp.w;
if(typ!=cp.typ)
return typ<cp.typ;
return 0;
}
};
in sm=0;
void prev(ev tp){
if(tp.typ==1){
ans[tp.u]+=tp.v*sm;
return;
}
sm+=cf.uni(tp.u,tp.v);
}
vector<ev> evs;
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
in n,q;
cin>>n>>q;
cf.ini(n);
ans.resize(q,0);
in ta,tb,tc;
forn(i,n-1){
cin>>ta>>tb>>tc;
--ta;
--tb;
evs.PB(ev(0,ta,tb,tc));
}
forn(i,q){
cin>>ta>>tb;
evs.PB(ev(1,i,-1,ta-1));
evs.PB(ev(1,i,1,tb));
}
sort(all(evs));
forv(i,evs)
prev(evs[i]);
forv(i,ans)
cout<<ans[i]<<"\n";
return 0;
}
In Java :
import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;
import static java.lang.System.out;
class WeightCount {
private int weight;
private long count;
public WeightCount(int weight, long count) {
this.weight = weight;
this.count = count;
}
public int getWeight() {
return weight;
}
public long getCount() {
return count;
}
public void setWeight(int weight) {
this.weight = weight;
}
public void setCount(long count) {
this.count = count;
}
public static int lower(WeightCount[] array, int size, int key) {
if (array == null || size < 0)
return -1;
if (size == 0)
return 0;
int l = 0;
int r = size - 1;
int mid, weight;
while ((r - l) > 1) {
mid = l + ((r - l) >> 1);
weight = array[mid].getWeight();
if (weight > key)
r = mid - 1;
else if (weight < key)
l = mid;
else
r = mid;
}
if (array[l].getWeight() > key)
return l - 1;
if (key == array[l].getWeight() ||
array[r].getWeight() > key)
return l;
return r;
}
}
class Edge implements Comparable<Edge> {
private int u;
private int v;
private int w;
public Edge(int u, int v, int w) {
this.u = u;
this.v = v;
this.w = w;
}
public int getU() {
return u;
}
public int getV() {
return v;
}
public int getW() {
return w;
}
public void setU(int u) {
this.u = u;
}
public void setV(int v) {
this.v = v;
}
public void setW(int w) {
this.w = w;
}
public int compareTo(Edge e) {
if (e != null) {
int tmp = e.getW();
if (w < tmp)
return -1;
if (w > tmp)
return 1;
}
return 0;
}
}
class DisjointSet {
private static final int DEFAULT_SIZE = 31;
private int[] idx;
private int[] size;
private int n;
private int components;
public DisjointSet(int n) {
if (n < 1)
n = DEFAULT_SIZE;
idx = new int[n + 1];
size = new int[n + 1];
this.n = n;
components = n;
for (int i = n; i > 0; i--) {
idx[i] = i;
size[i] = 1;
}
}
public DisjointSet() {
this(DEFAULT_SIZE);
}
private int root(int i) {
if (i < 1 || i > n)
return 0;
int p = i;
while (idx[p] != p)
p = idx[p];
int tmp;
while (idx[i] != p) {
tmp = idx[i];
idx[i] = p;
i = tmp;
}
return p;
}
public long join(int p, int q) {
int rootP = root(p);
int rootQ = root(q);
if (rootP != rootQ) {
long result = (long) size[rootP] * size[rootQ];
if (size[rootP] < size[rootQ]) {
idx[rootP] = rootQ;
size[rootQ] += size[rootP];
} else {
idx[rootQ] = rootP;
size[rootP] += size[rootQ];
}
components--;
return result;
}
return 0;
}
public boolean isConnected(int p, int q) {
return (root(p) == root(q));
}
}
public class MaximumCostQueries {
private static final int MAX_N = 100000;
private static final int MAX_Q = 100000;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int q = sc.nextInt();
if (n < 1 || n > MAX_N ||
q < 1 || q > MAX_Q)
return;
Edge[] edges = new Edge[n - 1];
int i, u, v, w;
for (i = n - 2; i >= 0; i--) {
u = sc.nextInt();
v = sc.nextInt();
w = sc.nextInt();
edges[i] = new Edge(u, v, w);
}
Arrays.sort(edges);
DisjointSet ds = new DisjointSet(n);
WeightCount[] wc = new WeightCount[n];
int j, k, limit;
long result;
limit = edges.length;
for (k = i = 0; i < limit; i = j) {
result = 0;
w = edges[i].getW();
j = i;
do {
result += ds.join(edges[j].getU(), edges[j].getV());
j++;
} while (j < limit && edges[j].getW() == w);
wc[k++] = new WeightCount(w, result);
}
// out.println("wc:");
// for (i = 0; i < k; i++)
// out.println(wc[i].getWeight() + ": " + wc[i].getCount());
for (i = 1; i < k; i++)
wc[i].setCount(wc[i - 1].getCount() + wc[i].getCount());
while (q-- > 0) {
i = sc.nextInt();
j = sc.nextInt();
u = WeightCount.lower(wc, k, i - 1);
v = WeightCount.lower(wc, k, j);
result = wc[v].getCount() - ((u < 0) ? 0 : wc[u].getCount());
out.println(result);
}
sc.close();
}
}
In C :
#include <stdio.h>
static long long int a[100000][3], parent[100001], n;
void mer(int p, int q, int r)
{
static int le[100001][3], ri[100001][3], i, j, k;
int n1 = q - p + 1, n2 = r - q;
for (i = 0; i<n1; i++)
{
le[i][0] = a[p + i][0];
le[i][1] = a[p + i][1];
le[i][2] = a[p + i][2];
}
for (j = 0; j<n2; j++)
{
ri[j][0] = a[q + j + 1][0];
ri[j][1] = a[q + j + 1][1];
ri[j][2] = a[q + j + 1][2];
}
le[n1][2] = ri[n2][2] = 1000000001;
i = j = 0;
for (k = p; k <= r; k++)
{
if (le[i][2] <= ri[j][2])
{
a[k][0] = le[i][0];
a[k][1] = le[i][1];
a[k][2] = le[i][2];
i++;
}
else
{
a[k][0] = ri[j][0];
a[k][1] = ri[j][1];
a[k][2] = ri[j][2];
j++;
}
}
}
void merge_sort(int p, int r)
{
int q;
if (p<r)
{
q = (p + r) / 2;
merge_sort(p, q);
merge_sort(q + 1, r);
mer(p, q, r);
}
}
int getParent(int x)
{
if (x == parent[x])
return x;
parent[x] = getParent(parent[x]);
return parent[x];
}
int bin_search(int x)
{
int low, mid, upp;
low = 0;
upp = n;
mid = (low + upp) / 2;
while (low<upp)
{
if (x<a[mid][2])
{
upp = mid - 1;
}
else if (x>a[mid][2])
{
if (x >= a[mid + 1][2])
low = mid + 1;
if (x<a[mid + 1][2])
break;
}
else
{
break;
}
mid = (low + upp) / 2;
}
return mid;
}
int main() {
static long long int q, count[100001], i, j, k, x, y, z, px, py;
scanf("%lld%lld", &n, &q);
for (i = 1; i<n; i++)
{
parent[i] = i;
count[i] = 1;
scanf("%lld%lld%lld", &a[i][0], &a[i][1], &a[i][2]);
}
parent[i] = i;
count[i] = 1;
merge_sort(1, n - 1);
for (i = 1; i<n; i++)
{
x = a[i][0];
y = a[i][1];
px = getParent(x);
py = getParent(y);
a[i][0] = count[px] * count[py];
if (count[px] >= count[py])
{
count[px] += count[py];
parent[py] = px;
}
else
{
count[py] += count[px];
parent[px] = py;
}
}
for (i = 2, j = 1; i<n; i++)
{
if (a[j][2] == a[i][2])
{
a[j][0] += a[i][0];
}
else
{
j++;
a[j][0] = a[i][0] + a[j - 1][0];
a[j][2] = a[i][2];
}
}
n = j;
while (q--)
{
scanf("%lld%lld", &x, &y);
px = bin_search(x - 1);
py = bin_search(y);
printf("%lld\n", a[py][0] - a[px][0]);
}
return 0;
}
In Python3 :
import bisect as bs
n, q = map(int, input().split())
edges = [list(map(int, input().split())) for _ in range(1, n)]
edges.sort(key=lambda x: x[2])
paths = {}
union = [-1] * n
def getroot(x):
if union[x] < 0:
return x
union[x] = getroot(union[x])
return union[x]
for u, v, c in edges:
u = getroot(u - 1)
v = getroot(v - 1)
paths[c] = paths.get(c, 0) + union[u] * union[v]
if union[u] < union[v]:
u, v = v, u
union[v] += union[u]
union[u] = v
paths = list(sorted(paths.items()))
a = [0]
b =[0]
for x, y in paths:
a.append(x)
b.append(b[-1] + y)
for _ in range(q):
l, r = map(int, input().split())
print(b[bs.bisect(a, r) - 1] - b[bs.bisect_left(a, l) - 1])
View More Similar Problems
Mr. X and His Shots
A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M
View Solution →Jim and the Skyscrapers
Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space
View Solution →Palindromic Subsets
Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t
View Solution →Counting On a Tree
Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n
View Solution →Polynomial Division
Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie
View Solution →Costly Intervals
Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the
View Solution →