# Sorted Subsegments

### Problem Statement :

```Consider an array  of  integers. We perform  queries of the following type on :

Sort all the elements in the subsegment .
Given , can you find and print the value at index  (where ) after performing  queries?

Input Format

The first line contains three positive space-separated integers describing the respective values of  (the number of integers in ),  (the number of queries), and  (an index in ).
The next line contains  space-separated integers describing the respective values of .
Each line  of the  subsequent lines contain two space-separated integers describing the respective  and  values for query .

Output Format

Print a single integer denoting the value of  after processing all q  queries.```

### Solution :

```                            ```Solution in C :

In  C  :

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

struct Query{
int l, r;
int ignore;
};

int ar1[75000];
int ar2[75000];

struct Query queries[75000];
struct Query sarea[75000];

int cmp(const void *a, const void *b){
return (*(int *)a - *(int *)b);
}

void insertionsort(int a[], int N){
int i, j;
int v;
for (i = 1; i < N; i++){
v = a[i];
for (j = i; j>0 && a[j - 1] > v; j--){
a[j] = a[j - 1];
}
a[j] = v;
}
}

int main() {

int n, q, k1, i, l, r, ign, j,mi,hr,nr,k,changed;
int si, sj;
int *a = ar1;
int *b = ar2;

scanf("%d %d %d", &n, &q, &k1);
for (i = 0; i<n; i++){
scanf("%d", &a[i]);
}
for (i = 0; i<q; i++){
scanf("%d %d", &(queries[i].l), &(queries[i].r));
queries[i].ignore = 0;
}
i = q ;
do{
i = i - 1;
} while (i >= 0 && (k1 < queries[i].l || k1 > queries[i].r));
if (i >= 0){
l = queries[i].l;
r = queries[i].r;
ign = i;
for (i = i-1; i >= 0; i--){
if (queries[i].r < l || queries[i].l > r){
queries[i].ignore = 1;
}
else{
if (queries[i].r > r && queries[i].l >= l)
r = queries[i].r;
else if (queries[i].l < l && queries[i].r <= r)
l = queries[i].l;
else  if (queries[i].l < l && queries[i].r > r){
ign = i;
r = queries[i].r;
l = queries[i].l;
}
}
}
l = 0;
r = 0;
si = 0;
for (i = 0; i <= ign; i++){

if (!queries[i].ignore){
for (sj = si - 1; sj >= 0; sj--){
if (sarea[sj].l < queries[i].l && queries[i].l < sarea[sj].r) break;
if (sarea[sj].l < queries[i].r && queries[i].r < sarea[sj].r) break;
if (sarea[sj].l >= queries[i].l && queries[i].r >= sarea[sj].r) break;
}
if (sj == -1){
qsort(a + queries[i].l, queries[i].r - queries[i].l + 1, sizeof(int), cmp);
sarea[si] = queries[i];
si++;
}
else{
changed =0;
l = sarea[sj].l;
r = sarea[sj].r;
if (queries[i].l < l){
changed=1;
hr = l - queries[i].l;
memcpy(b, a + queries[i].l, hr*sizeof(int));
//qsort(b, hr, sizeof(int), cmp);
insertionsort(b,hr);
mi = 0;
j = l;
k = queries[i].l;
nr = (r < queries[i].r ? r : queries[i].r);
while (mi < hr && j <= nr)
{
a[k++] = (b[mi] < a[j] ? b[mi++] : a[j++]);
}
while (mi < hr) a[k++] = b[mi++];

}
if (queries[i].r > r){
changed+=2;
hr = queries[i].r - r;
memcpy(b, a + r + 1, hr*sizeof(int));
//qsort(b, hr, sizeof(int), cmp);
insertionsort(b,hr);
mi = hr - 1;
j = r;
k = queries[i].r;

while (mi >= 0 && j >= queries[i].l)
{
a[k--] = (b[mi] > a[j] ? b[mi--] : a[j--]);
}
while (mi >= 0) a[k--] = b[mi--];
r = queries[i].r;
}
if (changed){
sarea[sj].l = queries[i].l;
sarea[sj].r = queries[i].r;
}
}
}
}
}
printf("%d", a[k1]);
return 0;
}```
```

```                        ```Solution in C++ :

In  C++  :

#include "bits/stdc++.h"
using namespace std;
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll;
template<typename T, typename U> static void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> static void amax(T &x, U y) { if(x < y) x = y; }

typedef char Val;
struct Sum {
int cnt;
Sum() : cnt(0) {}
Sum(const Val &val, int pos) : cnt(val) {}
Sum &operator+=(const Sum &that) { cnt += that.cnt; return *this; }
Sum operator+(const Sum &that) const { return Sum(*this) += that; }
};
int assign;
explicit Add(int a) : assign(a) {}
if(that.assign != -1)
assign = that.assign;
return *this;
}
void addToVal(Val &val, int pos) const {
if(assign != -1)
val = assign != 0;
}
void addToSum(Sum &sum, int left, int right) const {
if(assign != -1)
sum.cnt = assign != 0 ? right - left : 0;
}
};

struct SegmentTree {
vector<Val> leafs;
vector<Sum> nodes;
vector<int> leftpos, rightpos;
int n, n2;
void init(int n_, const Val &v = Val()) { init(vector<Val>(n_, v)); }
void init(const vector<Val> &u) {
n = 1; while(n < (int)u.size()) n *= 2;
n2 = (n - 1) / 2 + 1;
leafs = u; leafs.resize(n, Val());
nodes.resize(n);
for(int i = n - 1; i >= n2; -- i)
nodes[i] = Sum(leafs[i * 2 - n], i * 2 - n) + Sum(leafs[i * 2 + 1 - n], i * 2 + 1 - n);
for(int i = n2 - 1; i > 0; -- i)
nodes[i] = nodes[i * 2] + nodes[i * 2 + 1];

leftpos.resize(n); rightpos.resize(n);
for(int i = n - 1; i >= n2; -- i) {
leftpos[i] = i * 2 - n;
rightpos[i] = (i * 2 + 1 - n) + 1;
}
for(int i = n2 - 1; i > 0; -- i) {
leftpos[i] = leftpos[i * 2];
rightpos[i] = rightpos[i * 2 + 1];
}
}
Val get(int i) {
int indices[128];
int k = getIndices(indices, i, i + 1);
propagateRange(indices, k);
return leafs[i];
}
Sum getRangeCommutative(int i, int j) {
int indices[128];
int k = getIndices(indices, i, j);
propagateRange(indices, k);
Sum res = Sum();
for(int l = i + n, r = j + n; l < r; l >>= 1, r >>= 1) {
if(l & 1) res += sum(l ++);
if(r & 1) res += sum(-- r);
}
return res;
}
Sum getRange(int i, int j) {
int indices[128];
int k = getIndices(indices, i, j);
propagateRange(indices, k);
Sum res = Sum();
for(; i && i + (i&-i) <= j; i += i&-i)
res += sum((n + i) / (i&-i));
for(k = 0; i < j; j -= j&-j)
indices[k ++] = (n + j) / (j&-j) - 1;
while(-- k >= 0) res += sum(indices[k]);
return res;
}
void set(int i, const Val &x) {
int indices[128];
int k = getIndices(indices, i, i + 1);
propagateRange(indices, k);
leafs[i] = x;
mergeRange(indices, k);
}
if(i >= j) return;
int indices[128];
int k = getIndices(indices, i, j);
propagateRange(indices, k);
int l = i + n, r = j + n;
if(l & 1) { int p = (l ++) - n; x.addToVal(leafs[p], p); }
if(r & 1) { int p = (-- r) - n; x.addToVal(leafs[p], p); }
for(l >>= 1, r >>= 1; l < r; l >>= 1, r >>= 1) {
if(l & 1) add[l ++] += x;
if(r & 1) add[-- r] += x;
}
mergeRange(indices, k);
}
private:
int getIndices(int indices[], int i, int j) const {
int k = 0, l, r;
if(i >= j) return 0;
for(l = (n + i) >> 1, r = (n + j - 1) >> 1; l != r; l >>= 1, r >>= 1) {
indices[k ++] = l;
indices[k ++] = r;
}
for(; l; l >>= 1) indices[k ++] = l;
return k;
}
void propagateRange(int indices[], int k) {
for(int i = k - 1; i >= 0; -- i)
propagate(indices[i]);
}
void mergeRange(int indices[], int k) {
for(int i = 0; i < k; ++ i)
merge(indices[i]);
}
inline void propagate(int i) {
if(i >= n) return;
if(i * 2 < n) {
} else {
add[i].addToVal(leafs[i * 2 + 1 - n], i * 2 + 1 - n);
}
}
inline void merge(int i) {
if(i >= n) return;
nodes[i] = sum(i * 2) + sum(i * 2 + 1);
}
inline Sum sum(int i) {
propagate(i);
return i < n ? nodes[i] : Sum(leafs[i - n], i - n);
}
};

int main() {
int n; int q; int k;
while(~scanf("%d%d%d", &n, &q, &k)) {
vector<int> A(n);
for(int i = 0; i < n; ++ i)
scanf("%d", &A[i]);
vector<int> l(q), r(q);
for(int i = 0; i < q; ++ i)
scanf("%d%d", &l[i], &r[i]), ++ r[i];
vi values = A;
sort(values.begin(), values.end());
values.erase(unique(values.begin(), values.end()), values.end());
int lo = 0, up = (int)values.size() - 1;
while(up - lo > 0) {
int mid = (lo + up + 1) / 2;
vector<Val> initvals(n);
rep(i, n)
initvals[i] = values[mid] <= A[i];
SegmentTree segt; segt.init(initvals);
rep(i, q) {
int cnt0 = r[i] - l[i] - segt.getRangeCommutative(l[i], r[i]).cnt;
}
if(segt.get(k))
lo = mid;
else
up = mid - 1;
}
printf("%d\n", values[lo]);
}
return 0;
}```
```

```                        ```Solution in Java :

In  Java :

import java.io.*;
import java.util.*;

public class Solution {
private static PrintWriter out;

public static int[] brr;

static class SegmentTree {
public SegmentTree left, right;
public int nones, start, end;
public int pushval;

public SegmentTree(int start, int end) {
this.start = start;
this.end = end;
this.pushval = -1;
if (start != end) {
int mid = (start + end) >> 1;
left = new SegmentTree(start, mid);
right = new SegmentTree(mid+1, end);
nones = left.nones + right.nones;
} else {
nones = brr[start] == 1 ? 1 : 0;
}
}

public int size() {
return end-start+1;
}

public void push() {
if (left == null) return;
if (pushval == -1) return;
left.nones = pushval == 1 ? left.size() : 0;
left.pushval = pushval;
right.nones = pushval == 1 ? right.size() : 0;
right.pushval = pushval;
pushval = -1;
}
public void join() {
if (left == null) return;
this.nones = left.nones+right.nones;
}

public int count(int s, int e) {
if (start == s && end == e) return nones;
push();
int mid = (start + end) >> 1;
if (mid >= e) return left.count(s, e);
else if (mid < s) return right.count(s,e);
else return left.count(s,mid)+right.count(mid+1,e);
}

public void set(int s, int e, int val) {
if (s > e) return;
if (start == s && end == e) {
this.pushval = val;
this.nones = val == 1 ? this.size() : 0;
return;
}
push();
int mid = (start+end) >> 1;
if (mid >= e) {left.set(s, e, val);}
else if (mid < s) {right.set(s,e,val);}
else {
left.set(s,mid,val);
right.set(mid+1,e,val);
}
join();
}
}

public static void main(String[] args) throws IOException {
out = new PrintWriter(System.out, true);

int n = in.nextInt(), q = in.nextInt(), k = in.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = in.nextInt();
}
HashSet<Integer> dis = new HashSet<>();
for (int i = 0; i < n; i++) {
}
ArrayList<Integer> ls = new ArrayList<>(dis);
Collections.sort(ls);

int[] l = new int[q];
int[] r = new int[q];
for (int i = 0; i < q; i++) {
l[i] = in.nextInt();
r[i] = in.nextInt();
}

int lo = 0, hi = ls.size()-1;
while(lo<hi) {
int mid = (lo+hi+1) >> 1;
brr = new int[n];
for (int i = 0; i < n; i++) {
brr[i] = arr[i] < ls.get(mid) ? 0 : 1;
}
SegmentTree root = new SegmentTree(0, n-1);
for (int i = 0; i < q; i++) {
int a = root.count(l[i], r[i]);
root.set(l[i], r[i], 0);
root.set(r[i]-a+1, r[i], 1);
}
int x = root.count(k, k);
if (x == 1) {
lo = mid;
} else {
hi = mid-1;
}
}

out.println(ls.get(lo));
out.close();
System.exit(0);
}

public StringTokenizer tokenizer;

tokenizer = null;
}

public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}

public int nextInt() {
return Integer.parseInt(next());
}
}

}```
```

```                        ```Solution in Python :

In  Python3 :

import sys

dat = [x.split() for x in sys.stdin.readlines()]
N = int(dat[0][0])
Q = int(dat[0][1])
k = int(dat[0][2])
a = list(map(int, dat[1]))
q = [list(map(int, x)) for x in dat[2:len(dat)]]

##### Process Queries
b = sorted(a)
lmin, rmax, pmax, qmin = (N-1), 0, 0, (N-1)
pmin, qmax, flag = (N-1), 0, 1
if Q >= 2:
ladder = all(q[i+1][0] > q[i][0] for i in range(Q-1))
revlad = all(q[i+1][1] < q[i][1] for i in range(Q-1))

if a != b and ladder < 1 and revlad < 1:
for i in range(Q):
l, r = q[i][0], q[i][1]

if (r-l) > (rmax-lmin):
lmin, rmax = l, r

if l < pmin:
pmin, pmax = l, r
elif l == pmin and pmax < r:
pmax = r

if r > qmax:
qmin, qmax = l, r
elif r == qmax and qmin > l:
qmin = l

for i in range(Q):
l, r = q[i][0], q[i][1]

if l > lmin and r < rmax: continue
if l > pmin and r < pmax: continue
if l > qmin and r < qmax: continue

if i < (Q-1):
if l >= q[i+1][0] and r <= q[i+1][1]:
continue

if i > 0:
if l >= q[i-flag][0] and r <= q[i-flag][1]:
flag += 1
continue
else:
flag = 1

count += [i]
span_q += r-l+1

# Perform Queries
l, r, Qu = q[0][0], q[0][1], int((k+5)/5)
a[l:r+1] = sorted(a[l:r+1])
for i in range(1, Q):
l, r, r0, m, sig = q[i][0], q[i][1], q[i-1][1], 0, 0
if l > r0 or (r-r0) > 0.1*(r0-l):
a[l:r+1] = sorted(a[l:r+1])
continue
if k < l: break
count = list(range(r0+1, r+1))
for j in range(len(count)):
p, new_A = count[j], a[count[j]]
l, r0 = q[i][0], q[i-1][1]
if a[l] >= new_A:
del(a[p]); a[l:l] = [new_A]; continue
elif a[r0+j-1] <= new_A:
del(a[p]); a[r0+j:r0+j] = [new_A]; continue
while sig < 1:
m = int((l+r0)/2)
if a[m] > new_A:
r0 = m
elif a[m+1] < new_A:
l = m+1
else:
del(a[p]); a[m+1:m+1] = [new_A]
sig = 1

l, r, Qu = q[0][0], q[0][1], int((k+5)/5)
a[l:r+1] = sorted(a[l:r+1])
for i in range(1, Q):
l, r, l0, m, sig = q[i][0], q[i][1], q[i-1][0], 0, 0
if k > r: break
if r < l0:
a[l:r+1] = sorted(a[l:r+1]); continue
count = list(range(l, l0))
for j in range(len(count)):
p, new_A = count[j], a[count[j]]
if a[l0] >= new_A:
del(a[p]); a[l0:l0] = [new_A]; continue
elif a[r] <= new_A:
del(a[p]); a[r:r] = [new_A]; continue
while sig < 1:
m = int((l0+r)/2)
if a[m] > new_A:
r = m
elif a[m+1] < new_A:
l0 = m+1
else:
del(a[p]); a[m+1:m+1] = [new_A]
sig = 1

elif span_q < 1e9 and a != b:
for i in count:
l, r = q[i][0], q[i][1]
a[l:(r+1)] = sorted(a[l:(r+1)])
else:
a[pmin:qmax+1] = sorted(a[pmin:qmax+1])
print(a[k])```
```

## Kundu and Tree

Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that

## Super Maximum Cost Queries

Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and

## Contacts

We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co

## No Prefix Set

There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio

## Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

## Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do