Similar Pair
Problem Statement :
A pair of nodes, , is a similar pair if the following conditions are true: node is the ancestor of node Given a tree where each node is labeled from to , find the number of similar pairs in the tree. Function Description Complete the similarPair function in the editor below. It should return an integer that represents the number of pairs meeting the criteria. similarPair has the following parameter(s): n: an integer that represents the number of nodes k: an integer edges: a two dimensional array where each element consists of two integers that represent connected node numbers Input Format The first line contains two space-separated integers and , the number of nodes and the similarity threshold. Each of the next lines contains two space-separated integers defining an edge connecting nodes and , where node is the parent to node .
Solution :
Solution in C :
In C :
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "math.h"
typedef struct Node
{
struct Node *parent;
struct Node *peer_next;
struct Node *child_list;
int val;
struct Node *hash_next;
}Node;
unsigned long long int count;
unsigned int n,T,size;
Node **hash;
Node *root=NULL;
unsigned int diff(int a, int b)
{
if(a>b) return (a-b);
else return (b-a);
}
void countup(Node *x)
{
int i,val;
if(!x || !x->parent) return;
if((n-T) < size)
{
count+=size;
for(i=0;i<(((x->val-1)>T)?(x->val-1-T):0); i++)
if(hash[i]) count--;
for(i=(((x->val+T)>n)?n:(x->val+T));i<n; i++)
if(hash[i]) count--;
}
else if(T > size)
{
val=x->val;
x=x->parent;
while(x)
{
if(diff(val,x->val) <= T) count++;
x=x->parent;
}
}
else
{
for(i=((x->val-1)>T)?(x->val-1-T):0; i<(((x->val+T)>n)?n:(x->val+T)); i++)
{
if(hash[i])
{
//printf("%2d, 0x%x\n",i,hash[i]);
count++;
}
}
}
}
void solve()
{
Node *tmp=root;
Node *tmp1;
int i;
for(i=0;i<n;i++) hash[i]=NULL;
size=0;
while(tmp)
{
while(tmp->child_list)
{
hash[(tmp->val-1)%n]=tmp;
size++;
tmp=tmp->child_list;
}
countup(tmp);
tmp1=tmp;
tmp=tmp->parent;
if(tmp)// && (tmp->child_list == tmp1))
{
hash[(tmp->val-1)%n]=NULL;
size--;
tmp->child_list=tmp1->peer_next;
}
//printf("node = %3d (count = %d)\n",tmp1->val,count);
free(tmp1);
}
}
Node* allocate(unsigned int val)
{
Node *node=malloc(sizeof(Node));
memset(node,0,sizeof(Node));
node->val=val;
return node;
}
Node* insert(unsigned int val)
{
Node *tmp=hash[val%n];
if(!tmp)
{
return (hash[val%n]=allocate(val));
}
while(tmp)
{
if(tmp->val==val) return tmp;
if(!tmp->hash_next)
break;
tmp=tmp->hash_next;
}
return (tmp->hash_next=allocate(val));
}
void connect(Node *parent, Node *child)
{
if(!parent || !child) return;
/*if(!parent->child_list)
parent->child_list=child;
else
{
Node *peer=parent->child_list;
while(peer->peer_next) peer=peer->peer_next;
peer->peer_next=child;
}*/
child->peer_next=parent->child_list;
parent->child_list=child;
child->parent=parent;
}
void build(){
int i,a,b;
Node *parent,*child;
for(i=0;i<n-1;i++)
{
scanf("%d %d",&a,&b);
parent=insert(a);
child=insert(b);
//printf("%d %d\n",parent->val,child->val);
connect(parent,child);
/*if(!parent->parent)
root=parent;*/
}
root=hash[1];
while(root && root->parent) root=root->parent;
}
void print(Node *node, int level)
{
int i=level;
if(!node) return;
while(i--) printf(" ");
printf("%d (%d)\n",node->val,node->parent?node->parent->val:0);
node=node->child_list;
while(node)
{
print(node,level+1);
node=node->peer_next;
}
}
int main(){
count=0;
scanf("%d %d",&n,&T);
hash=malloc(n*sizeof(Node*));
memset(hash,0,n*sizeof(Node*));
if (!hash) return -1;
build();
//print(root, 0);
solve();
printf("%llu\n",count);
return 0;
}
Solution in C++ :
In C++ :
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
int n, aib[200005];
inline int lsb(int & x){
return x & -x;
}
void update(int val, int pos){
for(int i = pos; i <= n * 2; i += lsb(i))
aib[i] += val;
}
int query(int pos){
int rval = 0;
for(int i = pos; i > 0; i -= lsb(i))
rval += aib[i];
return rval;
}
vector<int> graph[100005];
int t, dad[100005];
long long ans;
void dfs(int x){
ans += (long long)query(x + t) - query(x - t - 1);
update(1, x);
for(int i = 0; i < graph[x].size(); ++i)
dfs(graph[x][i]);
update(-1, x);
}
int main() {
cin >> n >> t;
for(int i = 1; i < n; ++i){
int x, y;
cin >> x >> y;
dad[y] = x;
graph[x].push_back(y);
}
for(int i = 1; i <= n; ++i)
if(!dad[i])
dfs(i);
cout << ans;
return 0;
}
Solution in Java :
In Java :
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class Solution implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args) {
new Thread(null, new Solution(), "", 256 * (1L << 20)).start();
}
public void run() {
try {
long t1 = System.currentTimeMillis();
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("src/input.txt"));
Locale.setDefault(Locale.US);
solve();
in.close();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = " + (t2 - t1));
} catch (Throwable t) {
t.printStackTrace(System.err);
System.exit(-1);
}
}
String readString() throws IOException {
while (!tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException {
return Integer.parseInt(readString());
}
long readLong() throws IOException {
return Long.parseLong(readString());
}
double readDouble() throws IOException {
return Double.parseDouble(readString());
}
Edge[] first;
FenwickTree sum;
long result;
void solve() throws IOException {
int n = readInt();
int k = readInt();
first = new Edge[n];
boolean[] root = new boolean[n];
Arrays.fill(root, true);
for (int i = 0; i < n - 1; i++) {
int from = readInt() - 1;
int to = readInt() - 1;
root[to] = false;
first[from] = new Edge(from, to, first[from]);
}
sum = new FenwickTree(n);
result = 0;
for (int i = 0; i < n; i++) {
if (root[i]) {
dfs(i, k);
break;
}
}
out.println(result);
}
void dfs(int x, int k)
{
result += sum.find(x + k) - sum.find(x - k - 1);
sum.increase(x, +1);
for (Edge edge = first[x]; edge != null; edge = edge.next)
{
dfs(edge.b, k);
}
sum.increase(x, -1);
}
class Edge {
int a;
int b;
Edge next;
Edge(int a, int b, Edge next) {
this.a = a;
this.b = b;
this.next = next;
}
}
class FenwickTree {
private int[] sum;
FenwickTree(int size) {
sum = new int[size + 10];
}
private int prev(int x) {
return x & (x - 1);
}
private int next(int x) {
return 2 * x - prev(x);
}
void increase(int id, int value) {
id++;
while (id < sum.length) {
sum[id] += value;
id = next(id);
}
}
long find(int id) {
id++;
id = Math.min(sum.length - 1, id);
long res = 0;
if (id <= 0) {
return 0;
}
while (id > 0) {
res += sum[id];
id = prev(id);
}
return res;
}
}
}
Solution in Python :
In Python3 :
import resource
import sys
sys.setrecursionlimit(2000000)
def add(x, v):
x += 1
while x <= n:
a[x] += v
x += x & -x
def que(x):
x += 1
if x <= 0:
return 0
ret = 0
x = min(n, x)
while x > 0:
ret += a[x]
x -= x & -x
return ret
st = []
vis = {}
def dfs(x):
global ans
st.append(x)
while st:
x = st[-1]
if not x in vis:
ans += que(x + T) - que(x - T - 1)
add(x, 1)
vis[x] = 1
if nx[x]:
st.append(nx[x][-1])
nx[x].pop()
else:
st.pop()
add(x, -1)
n, T = (int(x) for x in input().split())
a = [0 for i in range(4 * n)]
nx = [[] for i in range(n)]
pre = [-1 for i in range(n)]
for i in range(n - 1):
s, e = (int(x) - 1 for x in input().split())
nx[s].append(e)
pre[e] = s
s = 1
while pre[s] != -1:
s = pre[s]
ans = 0
dfs(s)
print(ans)
View More Similar Problems
Tree: Postorder Traversal
Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the
View Solution →Tree: Inorder Traversal
In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func
View Solution →Tree: Height of a Binary Tree
The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary
View Solution →Tree : Top View
Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.
View Solution →Tree: Level Order Traversal
Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F
View Solution →Binary Search Tree : Insertion
You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <
View Solution →