Similar Pair


Problem Statement :


A pair of nodes, , is a similar pair if the following conditions are true:

node  is the ancestor of node 
Given a tree where each node is labeled from  to , find the number of similar pairs in the tree.


Function Description

Complete the similarPair function in the editor below. It should return an integer that represents the number of pairs meeting the criteria.

similarPair has the following parameter(s):

n: an integer that represents the number of nodes
k: an integer
edges: a two dimensional array where each element consists of two integers that represent connected node numbers
Input Format

The first line contains two space-separated integers  and , the number of nodes and the similarity threshold.
Each of the next  lines contains two space-separated integers defining an edge connecting nodes  and , where node  is the parent to node .



Solution :



title-img


                            Solution in C :

In  C :







#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "math.h"

typedef struct Node
{
	struct Node *parent;
	struct Node *peer_next;
	struct Node *child_list;
	int     val;
	struct Node *hash_next;
}Node;

unsigned long long int count;
unsigned int n,T,size;
Node **hash;
Node *root=NULL;

unsigned int diff(int a, int b)
{
	if(a>b) return (a-b);
	else    return (b-a);
}

void countup(Node *x)
{
    int i,val;
    if(!x || !x->parent) return;
    if((n-T) < size)
    {
        count+=size;
        for(i=0;i<(((x->val-1)>T)?(x->val-1-T):0); i++)
            if(hash[i]) count--;
        for(i=(((x->val+T)>n)?n:(x->val+T));i<n; i++)
            if(hash[i]) count--;
    }
    else if(T > size)
    {
        val=x->val;
        x=x->parent;
        while(x)
        {
            if(diff(val,x->val) <= T) count++;
            x=x->parent;
        }
    }
    else
    {
        for(i=((x->val-1)>T)?(x->val-1-T):0; i<(((x->val+T)>n)?n:(x->val+T)); i++)
        {
            if(hash[i])
            {
                //printf("%2d, 0x%x\n",i,hash[i]);
                count++;
            }
        }
    }
}

void solve()
{
    Node *tmp=root;
    Node *tmp1;
    int i;
    for(i=0;i<n;i++) hash[i]=NULL;
    size=0;
    while(tmp)
    {
        while(tmp->child_list)
        {
            hash[(tmp->val-1)%n]=tmp;
            size++;
            tmp=tmp->child_list;
        }

        countup(tmp);
        tmp1=tmp;
        tmp=tmp->parent;
        if(tmp)// && (tmp->child_list == tmp1))
        {
            hash[(tmp->val-1)%n]=NULL;
            size--;
            tmp->child_list=tmp1->peer_next;
        }
        //printf("node = %3d (count = %d)\n",tmp1->val,count);
        free(tmp1);
    }
}

Node* allocate(unsigned int val)
{
	Node *node=malloc(sizeof(Node));
    memset(node,0,sizeof(Node));
    node->val=val;
    return node;
}
Node* insert(unsigned int val)
{
    Node *tmp=hash[val%n];
    if(!tmp)
    {
        return (hash[val%n]=allocate(val));
    }
    while(tmp)
    {
        if(tmp->val==val) return tmp;
        if(!tmp->hash_next)
            break;
        tmp=tmp->hash_next;
    }
    return (tmp->hash_next=allocate(val));
}

void connect(Node *parent, Node *child)
{
    if(!parent || !child) return;
    /*if(!parent->child_list)
        parent->child_list=child;
    else
    {
        Node *peer=parent->child_list;
        while(peer->peer_next) peer=peer->peer_next;
        peer->peer_next=child;
    }*/
    child->peer_next=parent->child_list;
    parent->child_list=child;

    child->parent=parent;
}

void build(){

	int i,a,b;
	Node *parent,*child;
	for(i=0;i<n-1;i++)
	{
		scanf("%d %d",&a,&b);
        parent=insert(a);
        child=insert(b);
        //printf("%d %d\n",parent->val,child->val);
        connect(parent,child);
        /*if(!parent->parent)
            root=parent;*/
	}
	root=hash[1];
	while(root && root->parent) root=root->parent;
}

void print(Node *node, int level)
{
    int i=level;
    if(!node) return;
    while(i--) printf("  ");
    printf("%d (%d)\n",node->val,node->parent?node->parent->val:0);
    node=node->child_list;
    while(node)
    {
        print(node,level+1);
        node=node->peer_next;
    }
}

int main(){
	count=0;
	scanf("%d %d",&n,&T);
	hash=malloc(n*sizeof(Node*));
    memset(hash,0,n*sizeof(Node*));
	if (!hash) return -1;
	build();
	//print(root, 0);
	solve();
	printf("%llu\n",count);
	return 0;
}
                        


                        Solution in C++ :

In   C++  :







#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

int n, aib[200005];

inline int lsb(int & x){
    return x & -x;
}

void update(int val, int pos){
    for(int i = pos; i <= n * 2; i += lsb(i))
        aib[i] += val;
}

int query(int pos){
    int rval = 0;
    for(int i = pos; i > 0; i -= lsb(i))
        rval += aib[i];
    return rval;
}

vector<int> graph[100005];
int t, dad[100005];
long long ans;

void dfs(int x){
    ans += (long long)query(x + t) - query(x - t - 1);
    update(1, x);
    for(int i = 0; i < graph[x].size(); ++i)
        dfs(graph[x][i]);
    update(-1, x);
}

int main() {
    cin >> n >> t;
    for(int i = 1; i < n; ++i){
        int x, y;
        cin >> x >> y;
        dad[y] = x;
        graph[x].push_back(y);
    }
    for(int i = 1; i <= n; ++i)
        if(!dad[i])
            dfs(i);
    cout << ans;
    return 0;
}
                    


                        Solution in Java :

In  Java  :








import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;

public class Solution implements Runnable {

    BufferedReader in;
    PrintWriter out;
    StringTokenizer tok = new StringTokenizer("");

    public static void main(String[] args) {
        new Thread(null, new Solution(), "", 256 * (1L << 20)).start();
    }

    public void run() {
        try {
            long t1 = System.currentTimeMillis();
            in = new BufferedReader(new InputStreamReader(System.in));
            out = new PrintWriter(System.out);

          //  in = new BufferedReader(new FileReader("src/input.txt"));

            Locale.setDefault(Locale.US);
            solve();
            in.close();
            out.close();
            long t2 = System.currentTimeMillis();
            System.err.println("Time = " + (t2 - t1));
        } catch (Throwable t) {
            t.printStackTrace(System.err);
            System.exit(-1);
        }
    }

    String readString() throws IOException {
        while (!tok.hasMoreTokens()) {
            tok = new StringTokenizer(in.readLine());
        }
        return tok.nextToken();
    }

    int readInt() throws IOException {
        return Integer.parseInt(readString());
    }

    long readLong() throws IOException {
        return Long.parseLong(readString());
    }

    double readDouble() throws IOException {
        return Double.parseDouble(readString());
    }
    Edge[] first;
    FenwickTree sum;
    long result;

    void solve() throws IOException {
        int n = readInt();
        int k = readInt();
        first = new Edge[n];
        boolean[] root = new boolean[n];
        Arrays.fill(root, true);
        for (int i = 0; i < n - 1; i++) {
            int from = readInt() - 1;
            int to = readInt() - 1;
            root[to] = false;
            first[from] = new Edge(from, to, first[from]);
        }
        sum = new FenwickTree(n);
        result = 0;
        for (int i = 0; i < n; i++) {
            if (root[i]) {
                dfs(i, k);
                break;
            }
        }
        out.println(result);
    }
    
    void dfs(int x, int k)
    {
        result += sum.find(x + k) - sum.find(x - k - 1);
        sum.increase(x, +1);
        for (Edge edge = first[x]; edge != null; edge = edge.next)
        {
            dfs(edge.b, k);
        }
        sum.increase(x, -1);
    }
    

    class Edge {

        int a;
        int b;
        Edge next;

        Edge(int a, int b, Edge next) {
            this.a = a;
            this.b = b;
            this.next = next;
        }
    }

    class FenwickTree {

        private int[] sum;

        FenwickTree(int size) {
            sum = new int[size + 10];
        }

        private int prev(int x) {
            return x & (x - 1);
        }

        private int next(int x) {
            return 2 * x - prev(x);
        }

        void increase(int id, int value) {
            id++;
            while (id < sum.length) {
                sum[id] += value;
                id = next(id);
            }
        }

        long find(int id) {
            id++;
            id = Math.min(sum.length - 1, id);
            long res = 0;
            if (id <= 0) {
                return 0;
            }
            while (id > 0) {
                res += sum[id];
                id = prev(id);
            }
            return res;
        }
    }
}
                    


                        Solution in Python : 
                            
In  Python3 :








import resource
import sys
sys.setrecursionlimit(2000000)

def add(x, v):
    x += 1
    while x <= n:
        a[x] += v
        x += x & -x

def que(x):
    x += 1
    if x <= 0:
        return 0
    ret = 0
    x = min(n, x)
    while x > 0:
        ret += a[x]
        x -= x & -x
    return ret

st = []
vis = {}
def dfs(x):
    
    global ans
    st.append(x)
    while st:
        x = st[-1]
        if not x in vis:
            ans += que(x + T) - que(x - T - 1)
            add(x, 1)
            vis[x] = 1
        if nx[x]:
            st.append(nx[x][-1])
            nx[x].pop()
        else:
            st.pop()
            add(x, -1)

n, T = (int(x) for x in input().split())
a = [0 for i in range(4 * n)]
nx = [[] for i in range(n)]
pre = [-1 for i in range(n)]
for i in range(n - 1):
    s, e = (int(x) - 1 for x in input().split())
    nx[s].append(e)
    pre[e] = s
    
s = 1
while pre[s] != -1:
    s = pre[s]
ans = 0
dfs(s)
print(ans)
                    


View More Similar Problems

Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do

View Solution →

Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

View Solution →

Kindergarten Adventures

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

View Solution →

Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

View Solution →

Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

View Solution →

Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t

View Solution →