# Shopping Change - CodeChef

### Problem Statement :

```Chef went shopping and bought items worth X rupees (1≤X≤100). Unfortunately, Chef only has a single 100 rupees note.

Since Chef is weak at maths, can you help Chef in calculating what money he should get back after paying 100 rupees for those items?

Input Format

First line will contain T, the number of test cases. Then the test cases follow.
Each test case consists of a single line containing an integer X, the total price of items Chef purchased.

Output Format

For each test case, output in a single line the money Chef has to receive back.

Constraints
1≤T≤100
1≤X≤100

Sample Input 1

3
1
25
100

Sample Output 1

99
75
0

Explanation

Test case-1: Since chef paid 100 rupees for items worth 1 rupee. He should get back 99 rupees.

Test case-2: Since chef paid 100 rupees for items worth 25 rupees. He should get back 75 rupees.```

### Solution :

```                        ```Solution in C++ :

#include <iostream>
#include <cstdio>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <unordered_set>
#include <vector>
#include <algorithm>
#include <sys/time.h>
#include <climits>
#include <cmath>
#include <unordered_map>
#include <list>
#include <functional>
#include <cassert>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
#define FOR(i, s, e, t) for ((i) = (s); (i) < (e); (i) += (t))
#define REP(i, e) for (int i = 0; i < (e); ++i)
#define REP1(i, s, e) for (int i = (s); i < (e); ++i)
#define RREP(i, e) for (int i = (e); i >= 0; --i)
#define RREP1(i, e, s) for (int i = (e); i >= (s); --i)
ll inf = 1e18;
int __FAST_IO__ = []() {
std::ios::sync_with_stdio(0);
std::cin.tie(0);
std::cout.tie(0);
return 0;
}();

int main() {
int t;
cin >> t;
while (t--) {
int N;
cin >> N;
printf("%d\n", 100 - N);
}

return 0;
}```
```

```                        ```Solution in Java :

import java.util.*;
import java.io.*;

public class Main {

static long startTime = System.currentTimeMillis();

// for global initializations and methods starts here

// global initialisations and methods end here

static void run() {
boolean tc = true;

try (OutputStream out = new BufferedOutputStream(System.out)) {

//long startTime = System.currentTimeMillis();

int testcases = tc ? r.ni() : 1;
int tcCounter = 1;
// Hold Here Sparky------------------->>>
// Solution Starts Here

start:
while (testcases-- > 0) {
out.write((100 - r.ni() + " ").getBytes());
out.write(("\n").getBytes());
}
// Solution Ends Here
} catch (IOException e) {
e.printStackTrace();
}
}

final private int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
public StringTokenizer st;

din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
}

public AdityaFastIO(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
}

public String word() {
while (st == null || !st.hasMoreElements()) {
try {
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}

public String line() {
String str = "";
try {
} catch (IOException e) {
e.printStackTrace();
}
return str;
}

public String readLine() throws IOException {
byte[] buf = new byte; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}

public int ni() throws IOException {
int ret = 0;
while (c <= ' ') c = read();
boolean neg = (c == '-');
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}

public long nl() throws IOException {
long ret = 0;
while (c <= ' ') c = read();
boolean neg = (c == '-');
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) return -ret;
return ret;
}

public double nd() throws IOException {
double ret = 0, div = 1;
while (c <= ' ') c = read();
boolean neg = (c == '-');
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
if (neg) return -ret;
return ret;
}

private void fillBuffer() throws IOException {
if (bytesRead == -1) buffer = -1;
}

private byte read() throws IOException {
return buffer[bufferPointer++];
}

public void close() throws IOException {
if (din == null) return;
din.close();
}
}

public static void main(String[] args) throws Exception {
run();
}

int[] arr = new int[n];
for (int i = 0; i < n; i++) arr[i] = r.ni();
return arr;
}

long[] arr = new long[n];
for (int i = 0; i < n; i++) arr[i] = r.nl();
return arr;
}

List<Integer> al = new ArrayList<>();
for (int i = 0; i < n; i++) al.add(r.ni());
return al;
}

List<Long> al = new ArrayList<>();
for (int i = 0; i < n; i++) al.add(r.nl());
return al;
}

static long mod = 998244353;

static long modInv(long base, long e) {
long result = 1;
base %= mod;
while (e > 0) {
if ((e & 1) > 0) result = result * base % mod;
base = base * base % mod;
e >>= 1;
}
return result;
}

StringTokenizer st;

}

String word() {
while (st == null || !st.hasMoreElements()) {
try {
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}

String line() {
String str = "";
try {
} catch (IOException e) {
e.printStackTrace();
}
return str;
}

int ni() {
return Integer.parseInt(word());
}

long nl() {
return Long.parseLong(word());
}

double nd() {
return Double.parseDouble(word());
}
}

static int MOD = (int) (1e9 + 7);

static long powerLL(long x, long n) {
long result = 1;
while (n > 0) {
if (n % 2 == 1) result = result * x % MOD;
n = n / 2;
x = x * x % MOD;
}
return result;
}

static long powerStrings(int i1, int i2) {
String sa = String.valueOf(i1);
String sb = String.valueOf(i2);
long a = 0, b = 0;
for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD;
for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1);
return powerLL(a, b);
}

static long gcd(long a, long b) {
if (a == 0) return b;
else return gcd(b % a, a);
}

static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}

static long lower_bound(int[] arr, int x) {
int l = -1, r = arr.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (arr[m] >= x) r = m;
else l = m;
}
return r;
}

static int upper_bound(int[] arr, int x) {
int l = -1, r = arr.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (arr[m] <= x) l = m;
else r = m;
}
return l + 1;
}

static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) {
}

public static class Pair implements Comparable<Pair> {
int first;
int second;

public Pair(int first, int second) {
this.first = first;
this.second = second;
}

public String toString() {
return "(" + first + "," + second + ")";
}

public int compareTo(Pair o) {
// TODO Auto-generated method stub
if (this.first != o.first)
return (int) (this.first - o.first);
else return (int) (this.second - o.second);
}
}

public static class PairC<X, Y> implements Comparable<PairC> {
X first;
Y second;

public PairC(X first, Y second) {
this.first = first;
this.second = second;
}

public String toString() {
return "(" + first + "," + second + ")";
}

public int compareTo(PairC o) {
// TODO Auto-generated method stub
return o.compareTo((PairC) first);
}
}

static boolean isCollectionsSorted(List<Long> list) {
if (list.size() == 0 || list.size() == 1) return true;
for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false;
return true;
}

static boolean isCollectionsSortedReverseOrder(List<Long> list) {
if (list.size() == 0 || list.size() == 1) return true;
for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false;
return true;
}

}```
```

```                        ```Solution in Python :

t=int(input())
for _ in range(t):
n=int(input())
print(100-n)```
```

## View More Similar Problems

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

## Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

## Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

## Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t

## Counting On a Tree

Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n

## Polynomial Division

Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie