### Problem Statement :

```Byteland has N cities (numbered from 1 to N) and N-1 bidirectional roads. A path is comprised of 1 or more connected roads. It is guaranteed that there is a path from any city to any other city.

Steven is a road maintenance worker in Byteland. He is required to maintain exactly M paths on any given workday. He cannot work on the same road twice in one day (so no 2 paths can contain the same 2 roads). Steven can start his workday in any city and, once he has finished maintaining a path, teleport to his next starting city.

Given M, help Steven determine how many different possible M-path sets will allow him to perform his maintenance duties. Then print the answer modulo 10^9+7.

Input Format

The first line contains 2 space-separated integers, N (the number of cities) and M (the number of roads to maintain).
Each line i of the N-1 subsequent lines contains 2 space-separated integers, Ai Bi, describing a bidirectional road between cities Ai and Bi.

Constraints
1 <= N <= 10^5
1 <= M <= 5
Ai != Bi
1 <= Ai,Bi <= N

Output Format

Find the number of different M-path sets that will allow Steven to complete M orders, and print the answer %(10(+7).```

### Solution :

```                            ```Solution in C :

In C++ :

#include <bits/stdc++.h>

using namespace std;

#define N 100100
#define mod 1000000007
#define L 6
#define LL 11
#define clr(u) memset(u, 0, sizeof(u))

inline void add(int &x, int y) { x += y; if(x >= mod) x -= mod; }
inline int pp(int x, int y) { int rt = x + y; if(rt >= mod) rt -= mod; return rt; }

vector <int> v[N];

int n, m;
int pa[N], f[L][N], g[L][N], p[LL];

void dfs(int r) {
int I = 0, J;
int H[LL][LL];
clr(H);
H = 1;
for(int t = 0; t < v[r].size(); t ++) {
int u = v[r][t];
if(u == pa[r]) continue;
pa[u] = r;
dfs(u);
J = I; I = 1 - I;
clr(H[I]);
for(int i = 0; i < LL; i ++) {
for(int j = i; j < LL; j ++) {
for(int k = 0; k < L && k <= j; k ++) {
add(H[I][i][j], 1LL * H[J][i][j - k] * pp(f[k][u], g[k][u]) % mod);
if(i) add(H[I][i][j], 1LL * H[J][i - 1][j - k] * g[k][u] % mod);
}
}
}
}
for(int i = 0; i < LL; i ++) {
if(i & 1) {
for(int j = 0; j < L; j ++) {
add(g[j][r], 1LL * p[i + 1] * H[I][i][j + i / 2] % mod);
}
} else {
for(int j = 0; j < L; j ++) {
add(f[j][r], 1LL * p[i] * H[I][i][j + i / 2] % mod);
}
}
}
for(int i = 1; i < L; i ++) add(g[i][r], f[i-1][r]);
}

void run() {
dfs(1);
printf("%d\n", f[m]);
}

void init() {
p = p = 1;
for(int i = 4; i < LL; i += 2) p[i] = 1LL * (i - 1) * p[i-2] % mod;
}

int main() {
//freopen("in.txt", "r", stdin);
scanf("%d %d", &n, &m);
for(int i = 1, x, y; i < n; i ++) {
scanf("%d %d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
}
init();
run();
return 0;
}

In Java :

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;

public class D {
InputStream is;
PrintWriter out;
String INPUT = "";

void solve()
{
int n = ni(), m = ni();
int[] from = new int[n - 1];
int[] to = new int[n - 1];
for (int i = 0; i < n - 1; i++) {
from[i] = ni() - 1;
to[i] = ni() - 1;
}
int[][] g = packU(n, from, to);
int[][] pars = parents3(g, 0);
int[] par = pars, ord = pars, dep = pars;
int mod = 1000000007;
int[][] fif = enumFIF(100, mod);
long[] sel = new long;
long i2 = invl(2, mod);
for(int i = 0;i < 100;i++){
long u = fif[i] * (long)fif[i/2] % mod;
for(int j = 0;j < i/2;j++)u = u * i2 % mod;
sel[i] = u;
}
long[][] seab = new long;
for(int i = 0;i < 100;i++){
for(int j = 0;j <= i;j++){
seab[i][j] = C(i, j, mod, fif) * sel[i-j] % mod;
}
}

long[][] dp0 = new long[n][m+1];
long[][] dp1 = new long[n][m+1];
for(int i = n-1;i >= 0;i--){
int cur = ord[i];
long[][] ldp = new long[m+1][2*m+1];
ldp = 1;
for(int e : g[cur]){
if(par[cur] != e){
long[][] nldp = new long[m+1][2*m+1];
for(int j = 0;j <= m;j++){
for(int k = 0;k <= 2*m;k++){
if(ldp[j][k] == 0)continue;
for(int l = 0;j+l <= m;l++){
nldp[j+l][k] += dp0[e][l] * ldp[j][k];
nldp[j+l][k] %= mod;
if(k+1 <= 2*m){
nldp[j+l][k+1] += dp1[e][l] * ldp[j][k];
nldp[j+l][k+1] %= mod;
}
}
}
}
ldp = nldp;
}
}
for(int j = 0;j <= m;j++){
for(int k = 0;k <= 2*m;k++){
for(int ab = k%2;ab <= k;ab+=2){
int nj = j+(k+ab)/2;
if(nj <= m){
dp0[cur][nj] += ldp[j][k] * seab[k][ab];
dp0[cur][nj] %= mod;
}else{
break;
}
}
for(int ab = (k%2)^1;ab <= k+1;ab+=2){
int nj = j+(k+ab)/2;
if(nj <= m){
long w = k-1 >= 0 ? k * seab[k-1][ab] : 0;
if(ab-1 >= 0)w += seab[k][ab-1];
dp1[cur][nj] += ldp[j][k] * (w%mod);
dp1[cur][nj] %= mod;
}else{
break;
}
}
}
}
//   tr(cur);
//   tr(dp0[cur]);
//   tr(dp1[cur]);
}
out.println(dp0[m]);
}

public static long C(int n, int r, int mod, int[][] fif) {
if (n < 0 || r < 0 || r > n)
return 0;
return (long) fif[n] * fif[r] % mod * fif[n - r] % mod;
}

public static long invl(long a, long mod) {
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
return p < 0 ? p + mod : p;
}

public static int[][] enumFIF(int n, int mod) {
int[] f = new int[n + 1];
int[] invf = new int[n + 1];
f = 1;
for (int i = 1; i <= n; i++) {
f[i] = (int) ((long) f[i - 1] * i % mod);
}
long a = f[n];
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
invf[n] = (int) (p < 0 ? p + mod : p);
for (int i = n - 1; i >= 0; i--) {
invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
}
return new int[][] { f, invf };
}

public static int[][] parents3(int[][] g, int root) {
int n = g.length;
int[] par = new int[n];
Arrays.fill(par, -1);

int[] depth = new int[n];
depth = 0;

int[] q = new int[n];
q = root;
for (int p = 0, r = 1; p < r; p++) {
int cur = q[p];
for (int nex : g[cur]) {
if (par[cur] != nex) {
q[r++] = nex;
par[nex] = cur;
depth[nex] = depth[cur] + 1;
}
}
}
return new int[][] { par, q, depth };
}

static int[][] packU(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from)
p[f]++;
for (int t : to)
p[t]++;
for (int i = 0; i < n; i++)
g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}

void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);

long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}

public static void main(String[] args) throws Exception
{ new D().run(); }

private byte[] inbuf = new byte;
private int lenbuf = 0, ptrbuf = 0;

{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e)
{ throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}

private boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126); }
private int skip() {
int b; while((b = readByte()) != -1 && isSpaceChar(b));
return b; }

private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }

private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){
// when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
}
return sb.toString();
}

private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
}
return n == p ? buf : Arrays.copyOf(buf, p);
}

private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}

private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}

private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
}

while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
}

private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
}

while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
}

private static void tr(Object... o)
{ System.out.println(Arrays.deepToString(o));
}
}

In C :

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct _node{
int x;
int w;
struct _node *next;
} lnode;
#define MOD 1000000007
void insert_edge(int x,int y,int w);
void dfs(int x);
int M,trace={0};
long long dp={0};
lnode *table={0};

int main(){
int N,x,y,i;
long long ans;
scanf("%d%d",&N,&M);
for(i=0;i<N-1;i++){
scanf("%d%d",&x,&y);
insert_edge(x-1,y-1,1);
}
dfs(0);
for(i=ans=0;i<=M;i++)
ans=(ans+dp[i][M])%MOD;
printf("%lld",ans);
return 0;
}
void insert_edge(int x,int y,int w){
lnode *t=malloc(sizeof(lnode));
t->x=y;
t->w=w;
t->next=table[x];
table[x]=t;
t=malloc(sizeof(lnode));
t->x=x;
t->w=w;
t->next=table[y];
table[y]=t;
return;
}
void dfs(int x){
int i,j,k,l;
long long t;
lnode *p;
trace[x]=1;
dp[x]=1;
for(p=table[x];p;p=p->next)
if(!trace[p->x]){
dfs(p->x);
memset(t,0,sizeof(t));
for(i=0;i<=M;i++)
for(j=0;i+j<=M+1;j++)
for(k=0;k<=i;k++)
for(l=0;l<=j;l++){
if(i+j<=M){
t[k][i+j]=(t[k][i+j]+dp[k][i][x]*dp[l][j][p->x])%MOD;
if(k)
t[k-1][i+j]=(t[k-1][i+j]+dp[k][i][x]*dp[l][j][p->x]%MOD*k)%MOD;
if(k+1<=i+j)
t[k+1][i+j]=(t[k+1][i+j]+dp[k][i][x]*dp[l][j][p->x]%MOD*l)%MOD;
}
if(i+j && k)
t[k-1][i+j-1]=(t[k-1][i+j-1]+dp[k][i][x]*dp[l][j][p->x]%MOD*k*l)%MOD;
if(i+j+1<=M)
t[k+1][i+j+1]=(t[k+1][i+j+1]+dp[k][i][x]*dp[l][j][p->x])%MOD;
}
for(i=0;i<=M;i++)
for(j=0;j<=M;j++)
dp[i][j][x]=t[i][j]%MOD;
}
return;
}```
```

## Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

## Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

## Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

## Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t

## Counting On a Tree

Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n