Preprocessor Solution C++
Problem Statement :
Preprocessor directives are lines included in the code preceded by a hash sign (#). These lines are directives for the preprocessor. The preprocessor examines the code before actual compilation of code begins and resolves all these directives before any code is actually generated by regular statements. #define INF 10000000 if( val == INF) { //Do something } After the preprocessor has replaced the directives, the code will be if( val == 10000000) { //Here INF is replaced by the value with which it's defined. //Do something } You can also define function macros which have parameters. #define add(a, b) a + b int x = add(a, b); The second statement after the preprocessor has replaced the directives will be: int x = a + b; To know more about preprocessor directives, you can go to this link You're spending your afternoon at a local school, teaching kids how to code. You give them a simple task: find the difference between the maximum and minimum values in an array of integers. After a few hours, they came up with some promising source code. Unfortunately, it doesn't compile! Since you don't want to discourage them, you decide to make their code work without modifying it by adding preprocessor macros. Review the locked stub code in your editor and add the preprocessor macros necessary to make the code work. Input Format The first line contains an integer, N , denoting the size of the array. The second line contains N space-separated integers, x1, x2, . . . . , xn , describing the elements in the array. Constraints 1 <= N <= 10^3 -10^8 <= xi <= 10^8 Output Format You are not responsible for printing any output to stdout. Once the necessary preprocessor macros are written, the locked code in your editor will print a line that says Result = Z , where Z is the difference between the maximum and minimum values in the array.
Solution :
Solution in C :
#define io(v) cin >> v
#define foreach(v, i) for (int i = 0; i < v.size(); i++)
#define minimum(a, b) a = min(a, b)
#define maximum(a, b) a = max(a, b)
#define toStr(s) #s
#define FUNCTION(fun, cmp)
#define INF 0x3f3f3f3f
View More Similar Problems
Median Updates
The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o
View Solution →Maximum Element
You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each
View Solution →Balanced Brackets
A bracket is considered to be any one of the following characters: (, ), {, }, [, or ]. Two brackets are considered to be a matched pair if the an opening bracket (i.e., (, [, or {) occurs to the left of a closing bracket (i.e., ), ], or }) of the exact same type. There are three types of matched pairs of brackets: [], {}, and (). A matching pair of brackets is not balanced if the set of bra
View Solution →Equal Stacks
ou have three stacks of cylinders where each cylinder has the same diameter, but they may vary in height. You can change the height of a stack by removing and discarding its topmost cylinder any number of times. Find the maximum possible height of the stacks such that all of the stacks are exactly the same height. This means you must remove zero or more cylinders from the top of zero or more of
View Solution →Game of Two Stacks
Alexa has two stacks of non-negative integers, stack A = [a0, a1, . . . , an-1 ] and stack B = [b0, b1, . . . , b m-1] where index 0 denotes the top of the stack. Alexa challenges Nick to play the following game: In each move, Nick can remove one integer from the top of either stack A or stack B. Nick keeps a running sum of the integers he removes from the two stacks. Nick is disqualified f
View Solution →Largest Rectangle
Skyline Real Estate Developers is planning to demolish a number of old, unoccupied buildings and construct a shopping mall in their place. Your task is to find the largest solid area in which the mall can be constructed. There are a number of buildings in a certain two-dimensional landscape. Each building has a height, given by . If you join adjacent buildings, they will form a solid rectangle
View Solution →