**Largest Rectangle Submatrix - Amazon Top Interview Questions**

### Problem Statement :

Given a two-dimensional integer matrix consisting only of 1s and 0s, return the area of the largest rectangle containing only 1s. Constraints 0 ≤ n, m ≤ 250 where n and m are the number of rows and columns in matrix Example 1 Input matrix = [ [1, 0, 0, 0], [1, 0, 1, 1], [1, 0, 1, 1], [0, 1, 0, 0] ] Output 4 Explanation The biggest rectangle here is the 2 by 2 square of 1s on the right. Example 2 Input matrix = [ [1, 0, 0, 0, 0], [0, 0, 1, 1, 0], [0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [1, 1, 0, 0, 1], [1, 1, 0, 0, 1] ] Output 4 Example 3 Input matrix = [ [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 0, 0] ] Output 12 Example 4 Input matrix = [ [1, 1, 1, 1], [1, 0, 0, 1], [1, 1, 1, 1], [1, 1, 1, 1] ] Output 8

### Solution :

` ````
Solution in C++ :
int solve(vector<vector<int>>& matrix) {
if (!matrix.size() || !matrix[0].size()) return 0;
int i, j, m = matrix.size(), n = matrix[0].size(), ret = 0;
vector<int> height(n + 1, 0);
for (i = 0; i < m; i++) {
vector<int> st;
for (j = 0; j <= n; j++) {
if (j < n) height[j] = (matrix[i][j] ? height[j] + 1 : 0);
while (st.size() && height[st.back()] >= height[j]) {
int h = height[st.back()];
st.pop_back();
int w = (st.size() ? j - st.back() - 1 : j);
ret = max(ret, w * h);
}
st.push_back(j);
}
}
return ret;
}
```

` ````
Solution in Java :
import java.util.*;
class Solution {
public int solve(int[][] matrix) {
final int C = matrix[0].length;
int[] dp = new int[C];
int res = 0;
Stack<int[]> stack = new Stack<>();
for (int[] row : matrix) {
for (int c = 0; c != C; c++) {
dp[c] = row[c] == 0 ? 0 : dp[c] + 1;
int earliest = c;
while (stack.isEmpty() == false && stack.peek()[1] >= dp[c]) {
int[] prev = stack.pop();
earliest = prev[0];
res = Math.max(res, (c - prev[0]) * prev[1]);
}
stack.push(new int[] {earliest, dp[c]});
}
while (stack.isEmpty() == false) {
int[] prev = stack.pop();
res = Math.max(res, (C - prev[0]) * prev[1]);
}
}
return res;
}
}
```

` ````
Solution in Python :
class Solution:
def solve(self, matrix):
M, N = len(matrix), len(matrix[0])
skyline = [0] * N
area = 0
for row in matrix:
skyline = self.update_skyline(row, skyline)
area = max(area, self.largest_rect_area(skyline))
return area
def update_skyline(self, row, prev_skyline):
new_skyline = []
for nonzero, prev_height in zip(row, prev_skyline):
new_skyline.append(prev_height + 1 if nonzero else 0)
return new_skyline
def largest_rect_area(self, skyline):
stack = []
area = 0
for i, height in enumerate(skyline + [0]):
earliest_j = i
while stack and height <= stack[-1][1]:
j, other_height = stack.pop()
area = max(area, (i - j) * other_height)
earliest_j = min(earliest_j, j)
stack.append((earliest_j, height))
return area
```

## View More Similar Problems

## Tree: Height of a Binary Tree

The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary

View Solution →## Tree : Top View

Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.

View Solution →## Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

View Solution →## Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

View Solution →## Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

View Solution →## Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

View Solution →