Hash Table - Amazon Top Interview Questions


Problem Statement :


Implement a hash table with the following methods:

HashTable() constructs a new instance of a hash table
put(int key, int val) updates the hash table such that key maps to val
get(int key) returns the value associated with key. If there is no such key, then return -1.
remove(int key) removes both the key and the value associated with it in the hash table.
This should be implemented without using built-in hash table.

Constraints

n ≤ 100,000 where n is the number of calls to put, get and remove\


Example 1

Input
methods = ["constructor", "put", "get", "remove", "get"]
arguments = [[], [1, 10], [1], [1], [1]]`


Output
[None, None, 10, None, -1]



Solution :



title-img




                        Solution in C++ :

class HashTable {
    public:
    vector<vector<pair<int, int>>> hashMap;

    HashTable() {
        hashMap = vector<vector<pair<int, int>>>(1000, vector<pair<int, int>>());
    }

    int findHash(int key) {
        return key % 1000;
    }

    void put(int key, int val) {
        int hashVal = findHash(key);

        for (int i = 0; i < hashMap[hashVal].size(); i++) {
            if (hashMap[hashVal][i].first == key) {
                hashMap[hashVal][i].second = val;
                return;
            }
        }

        hashMap[hashVal].push_back({key, val});
    }

    int get(int key) {
        int hashVal = findHash(key);

        for (int i = 0; i < hashMap[hashVal].size(); i++) {
            if (hashMap[hashVal][i].first == key) return hashMap[hashVal][i].second;
        }

        return -1;
    }

    void remove(int key) {
        int hashVal = findHash(key);
        int n = hashMap[hashVal].size();

        for (int i = 0; i < hashMap[hashVal].size(); i++) {
            if (hashMap[hashVal][i].first == key) {
                swap(hashMap[hashVal][i], hashMap[hashVal][n - 1]);
                hashMap[hashVal].pop_back();
            }
        }
        return;
    }
};
                    


                        Solution in Java :

import java.util.*;

class HashTable {
    static class Pair {
        int key;
        int val;

        Pair(int key, int val) {
            this.key = key;
            this.val = val;
        }
    }

    int size;
    ArrayList<Pair>[] buckets;

    public HashTable() {
        this.size = 10000;
        this.buckets = new ArrayList[10000];
        for (int i = 0; i < 10000; i++) buckets[i] = new ArrayList();
    }

    private int hash(int key) {
        return key % size;
    }

    public void put(int key, int val) {
        int hash_val = hash(key);
        ArrayList<Pair> arr = buckets[hash_val];

        if (contains(key, val)) {
            for (Pair p : arr) {
                if (p.key == key)
                    p.val = val;
            }
        } else {
            arr.add(new Pair(key, val));
        }
    }

    private boolean contains(int key, int val) {
        int hash_val = hash(key);
        ArrayList<Pair> arr = buckets[hash_val];
        for (Pair p : arr) {
            if (p.key == key)
                return true;
        }
        return false;
    }

    public int get(int key) {
        if (!contains(key, -1))
            return -1;
        int hash_val = hash(key);
        ArrayList<Pair> arr = buckets[hash_val];
        for (Pair p : arr) {
            if (p.key == key)
                return p.val;
        }
        return -1;
    }

    public void remove(int key) {
        ArrayList<Pair> newArr = new ArrayList();
        int hash_val = hash(key);
        ArrayList<Pair> arr = buckets[hash_val];
        for (Pair p : arr) {
            if (p.key != key)
                newArr.add(p);
        }
        buckets[hash_val] = newArr;
    }
}
                    


                        Solution in Python : 
                            
class Node:
    def __init__(self, key=None, value=None):
        self.key = key
        self.value = value
        self.next = None


class HashTable:
    def __init__(self):
        self.hashmap = [None for i in range(1001)]

    def find_index(self, key):
        return key % 1001

    def find(self, key, node):
        prev = None
        cur = node
        while cur and cur.key != key:
            prev = cur
            cur = cur.next
        return prev

    def put(self, key, value):
        index = self.find_index(key)
        if self.hashmap[index] is None:
            self.hashmap[index] = Node()
        node = self.hashmap[index]
        node = self.find(key, node)
        if node.next:
            node.next.value = value
        else:
            node.next = Node(key, value)

    def get(self, key):
        index = self.find_index(key)
        if self.hashmap[index] is None:
            return -1
        node = self.hashmap[index]
        node = self.find(key, node)
        if node.next:
            return node.next.value
        else:
            return -1

    def remove(self, key):
        index = self.find_index(key)
        if self.hashmap[index] is None:
            return
        node = self.hashmap[index]
        node = self.find(key, node)
        if node.next:
            node.next = node.next.next
        else:
            return
                    


View More Similar Problems

Is This a Binary Search Tree?

For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a

View Solution →

Square-Ten Tree

The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the

View Solution →

Balanced Forest

Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a

View Solution →

Jenny's Subtrees

Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .

View Solution →

Tree Coordinates

We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For

View Solution →

Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →