Get Lowest Free - CodeChef


Problem Statement :


Chef goes to the supermarket to buy some items. Luckily there's a sale going on under which Chef gets the following offer:

If Chef buys 3 items then he gets the item (out of those 3 items) having the lowest price as free.
For e.g. if Chef bought 3 items with the cost 6, 2 and 4, then he would get the item with cost 2 as free. So he would only have to pay the cost of the other two items which will be 6+4=10.

Chef buys 3 items having prices A, B and C respectively. What is the amount of money Chef needs to pay?

Input Format

The first line will contain an integer T - number of test cases. Then the test cases follow.
The first and only line of each test case contains three integers A,B,C - the prices of the items bought by Chef.

Output Format

For each test case, output the price paid by Chef.

Constraints

1≤T≤100
1≤A,B,C≤10
Sample Input 1 

3
6 2 4
3 3 3
8 4 4

Sample Output 1 

10
6
12



Solution :



title-img




                        Solution in C++ :

#include <iostream>
#include <cstdio>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <unordered_set>
#include <vector>
#include <algorithm>
#include <sys/time.h>
#include <climits>
#include <cmath>
#include <unordered_map>
#include <list>
#include <functional>
#include <cassert>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
#define FOR(i, s, e, t) for ((i) = (s); (i) < (e); (i) += (t)) 
#define REP(i, e) for (int i = 0; i < (e); ++i) 
#define REP1(i, s, e) for (int i = (s); i < (e); ++i)
#define RREP(i, e) for (int i = (e); i >= 0; --i)
#define RREP1(i, e, s) for (int i = (e); i >= (s); --i)
ll inf = 1e18;
int __FAST_IO__ = []() {
	std::ios::sync_with_stdio(0);
	std::cin.tie(0);
	std::cout.tie(0);
	return 0;
}();

int main() {
    int t;
    cin >> t;
    while (t--) {
    	int A, B, C;
    	cin >> A >> B >> C;
    	printf("%d\n", A + B + C - min({A, B, C}));
    }
    
    return 0;
}
                    


                        Solution in Java :

import java.util.*;
import java.io.*;

public class Main {

    static long startTime = System.currentTimeMillis();

    // for global initializations and methods starts here

    // global initialisations and methods end here

    static void run() {
        boolean tc = true;
        AdityaFastIO r = new AdityaFastIO();
        //FastReader r = new FastReader();

        try (OutputStream out = new BufferedOutputStream(System.out)) {

            //long startTime = System.currentTimeMillis();

            int testcases = tc ? r.ni() : 1;
            int tcCounter = 1;
            // Hold Here Sparky------------------->>>
            // Solution Starts Here

            start:
            while (testcases-- > 0) {
                int n = 3;
                List<Integer> al = readIntList(n, r);
                long sum = al.stream().mapToInt(a -> a).sum();
                out.write((sum - Collections.min(al) + " ").getBytes());
                out.write(("\n").getBytes());
            }
            // Solution Ends Here
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    static class AdityaFastIO {
        final private int BUFFER_SIZE = 1 << 16;
        private final DataInputStream din;
        private final byte[] buffer;
        private int bufferPointer, bytesRead;
        public BufferedReader br;
        public StringTokenizer st;

        public AdityaFastIO() {
            br = new BufferedReader(new InputStreamReader(System.in));
            din = new DataInputStream(System.in);
            buffer = new byte[BUFFER_SIZE];
            bufferPointer = bytesRead = 0;
        }

        public AdityaFastIO(String file_name) throws IOException {
            din = new DataInputStream(new FileInputStream(file_name));
            buffer = new byte[BUFFER_SIZE];
            bufferPointer = bytesRead = 0;
        }

        public String word() {
            while (st == null || !st.hasMoreElements()) {
                try {
                    st = new StringTokenizer(br.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return st.nextToken();
        }

        public String line() {
            String str = "";
            try {
                str = br.readLine();
            } catch (IOException e) {
                e.printStackTrace();
            }
            return str;
        }

        public String readLine() throws IOException {
            byte[] buf = new byte[100000001]; // line length
            int cnt = 0, c;
            while ((c = read()) != -1) {
                if (c == '\n') break;
                buf[cnt++] = (byte) c;
            }
            return new String(buf, 0, cnt);
        }

        public int ni() throws IOException {
            int ret = 0;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (neg) return -ret;
            return ret;
        }

        public long nl() throws IOException {
            long ret = 0;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (neg) return -ret;
            return ret;
        }

        public double nd() throws IOException {
            double ret = 0, div = 1;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
            if (neg) return -ret;
            return ret;
        }

        private void fillBuffer() throws IOException {
            bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
            if (bytesRead == -1) buffer[0] = -1;
        }

        private byte read() throws IOException {
            if (bufferPointer == bytesRead) fillBuffer();
            return buffer[bufferPointer++];
        }

        public void close() throws IOException {
            if (din == null) return;
            din.close();
        }
    }

    public static void main(String[] args) throws Exception {
        run();
    }

    static int[] readIntArr(int n, AdityaFastIO r) throws IOException {
        int[] arr = new int[n];
        for (int i = 0; i < n; i++) arr[i] = r.ni();
        return arr;
    }

    static long[] readLongArr(int n, AdityaFastIO r) throws IOException {
        long[] arr = new long[n];
        for (int i = 0; i < n; i++) arr[i] = r.nl();
        return arr;
    }

    static List<Integer> readIntList(int n, AdityaFastIO r) throws IOException {
        List<Integer> al = new ArrayList<>();
        for (int i = 0; i < n; i++) al.add(r.ni());
        return al;
    }

    static List<Long> readLongList(int n, AdityaFastIO r) throws IOException {
        List<Long> al = new ArrayList<>();
        for (int i = 0; i < n; i++) al.add(r.nl());
        return al;
    }

    static long mod = 998244353;

    static long modInv(long base, long e) {
        long result = 1;
        base %= mod;
        while (e > 0) {
            if ((e & 1) > 0) result = result * base % mod;
            base = base * base % mod;
            e >>= 1;
        }
        return result;
    }

    static class FastReader {
        BufferedReader br;
        StringTokenizer st;

        public FastReader() {
            br = new BufferedReader(new InputStreamReader(System.in));
        }

        String word() {
            while (st == null || !st.hasMoreElements()) {
                try {
                    st = new StringTokenizer(br.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return st.nextToken();
        }

        String line() {
            String str = "";
            try {
                str = br.readLine();
            } catch (IOException e) {
                e.printStackTrace();
            }
            return str;
        }

        int ni() {
            return Integer.parseInt(word());
        }

        long nl() {
            return Long.parseLong(word());
        }

        double nd() {
            return Double.parseDouble(word());
        }
    }

    static int MOD = (int) (1e9 + 7);

    static long powerLL(long x, long n) {
        long result = 1;
        while (n > 0) {
            if (n % 2 == 1) result = result * x % MOD;
            n = n / 2;
            x = x * x % MOD;
        }
        return result;
    }

    static long powerStrings(int i1, int i2) {
        String sa = String.valueOf(i1);
        String sb = String.valueOf(i2);
        long a = 0, b = 0;
        for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD;
        for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1);
        return powerLL(a, b);
    }

    static long gcd(long a, long b) {
        if (a == 0) return b;
        else return gcd(b % a, a);
    }

    static long lcm(long a, long b) {
        return (a * b) / gcd(a, b);
    }

    static long lower_bound(int[] arr, int x) {
        int l = -1, r = arr.length;
        while (l + 1 < r) {
            int m = (l + r) >>> 1;
            if (arr[m] >= x) r = m;
            else l = m;
        }
        return r;
    }

    static int upper_bound(int[] arr, int x) {
        int l = -1, r = arr.length;
        while (l + 1 < r) {
            int m = (l + r) >>> 1;
            if (arr[m] <= x) l = m;
            else r = m;
        }
        return l + 1;
    }

    static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) {
        graph.get(edge1).add(edge2);
        graph.get(edge2).add(edge1);
    }

    public static class Pair implements Comparable<Pair> {
        int first;
        int second;

        public Pair(int first, int second) {
            this.first = first;
            this.second = second;
        }

        public String toString() {
            return "(" + first + "," + second + ")";
        }

        public int compareTo(Pair o) {
            // TODO Auto-generated method stub
            if (this.first != o.first)
                return (int) (this.first - o.first);
            else return (int) (this.second - o.second);
        }
    }

    public static class PairC<X, Y> implements Comparable<PairC> {
        X first;
        Y second;

        public PairC(X first, Y second) {
            this.first = first;
            this.second = second;
        }

        public String toString() {
            return "(" + first + "," + second + ")";
        }

        public int compareTo(PairC o) {
            // TODO Auto-generated method stub
            return o.compareTo((PairC) first);
        }
    }

    static boolean isCollectionsSorted(List<Long> list) {
        if (list.size() == 0 || list.size() == 1) return true;
        for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false;
        return true;
    }

    static boolean isCollectionsSortedReverseOrder(List<Long> list) {
        if (list.size() == 0 || list.size() == 1) return true;
        for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false;
        return true;
    }

}
                    


                        Solution in Python : 
                            
t=int(input())
for _ in range(t):
	a,b,c=map(int,input().split())
	print(a+b+c-min([a,b,c]))
                    


View More Similar Problems

Down to Zero II

You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q.

View Solution →

Truck Tour

Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump. Initially, you have a tank of infinite capacity carrying no petr

View Solution →

Queries with Fixed Length

Consider an -integer sequence, . We perform a query on by using an integer, , to calculate the result of the following expression: In other words, if we let , then you need to calculate . Given and queries, return a list of answers to each query. Example The first query uses all of the subarrays of length : . The maxima of the subarrays are . The minimum of these is . The secon

View Solution →

QHEAP1

This question is designed to help you get a better understanding of basic heap operations. You will be given queries of types: " 1 v " - Add an element to the heap. " 2 v " - Delete the element from the heap. "3" - Print the minimum of all the elements in the heap. NOTE: It is guaranteed that the element to be deleted will be there in the heap. Also, at any instant, only distinct element

View Solution →

Jesse and Cookies

Jesse loves cookies. He wants the sweetness of all his cookies to be greater than value K. To do this, Jesse repeatedly mixes two cookies with the least sweetness. He creates a special combined cookie with: sweetness Least sweet cookie 2nd least sweet cookie). He repeats this procedure until all the cookies in his collection have a sweetness > = K. You are given Jesse's cookies. Print t

View Solution →

Find the Running Median

The median of a set of integers is the midpoint value of the data set for which an equal number of integers are less than and greater than the value. To find the median, you must first sort your set of integers in non-decreasing order, then: If your set contains an odd number of elements, the median is the middle element of the sorted sample. In the sorted set { 1, 2, 3 } , 2 is the median.

View Solution →