Flipping Coins


Problem Statement :


There are N coins kept on the table, numbered from 0 to N - 1. Initially, each coin is kept tails up. You have to perform two types of operations:

1) Flip all coins numbered between A and B inclusive. This is represented by the command "0 A B"

2) Answer how many coins numbered between A and B inclusive are heads up. This is represented by the command "1 A B".

Input :

The first line contains two integers, N and Q. Each of the next Q lines are either of the form "0 A B" or "1 A B" as mentioned above.

Output :

Output 1 line for each of the queries of the form "1 A B" containing the required answer for the corresponding query.

Sample Input :

4 7
1 0 3
0 1 2
1 0 1
1 0 0
0 0 3
1 0 3 
1 3 3

Sample Output :

0
1
0
2
1

Constraints :

1 <= N <= 100000
1 <= Q <= 100000
0 <= A <= B <= N - 1



Solution :



title-img


                            Solution in C :

#include <stdio.h>
#include <stdlib.h>

int t[20000002] = { 0 }, lz[20000002] = { 0 };

void update(int node, int s, int e, int l, int r) {
	if (lz[node]) {
		t[node] = (e - s + 1) - t[node];
		if (s != e) {
			lz[node << 1] ^= 1;
			lz[(node << 1) | 1] ^= 1;
		}
		lz[node] = 0;
	}
	if (r < s || e < l || e < s)
		return;
	else if (l <= s && e <= r) {
		t[node] = (e - s + 1) - t[node];
		if (s != e) {
			lz[node << 1] ^= 1;
			lz[(node << 1) | 1] ^= 1;
		}
		return;
	}
	int m = s + (e - s) / 2;
	update(node << 1, s, m, l, r);
	update((node << 1) | 1, m + 1, e, l, r);
	t[node] = t[node << 1] + t[(node << 1) | 1];
}

int query(int node, int s, int e, int l, int r) {
	if (lz[node]) {
		t[node] = (e - s + 1) - t[node];
		if (s != e) {
			lz[node << 1] ^= 1;
			lz[(node << 1) | 1] ^= 1;
		}	lz[node] = 0;
	}
	if (r < s || e < l || e < s)
		return 0;
	else if (l <= s && e <= r)
		return t[node];
	int p, q, m = s + (e - s) / 2;
	p = query(node << 1, s, m, l, r);
	q = query((node << 1) | 1, m + 1, e, l, r);
	return p + q;
}
int main() {
	int n, q, t, a, b;
	scanf("%d%d", &n, &q);
	while (q--) {
		scanf("%d%d%d", &t, &a, &b);
		a++;
		b++;
		if (t) {
			printf("%d\n", query(1, 1, n, a, b));
		}
		else {
			update(1, 1, n, a, b);
		}
	}
	return 0;
}
                        


                        Solution in C++ :

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
ll seg[400010];
ll lazy[400010];
void up(int in,int l,int r,int sl,int sr)
{
    if(lazy[in]!=0)
    {
        seg[in]=(sr-sl+1)-seg[in];
        if(sl!=sr){
            lazy[2*in]=!lazy[2*in];
            lazy[2*in+1]=!lazy[2*in+1];
        }
        lazy[in]=0;
    }
    if(r<sl || l>sr || l>r)return;
    if(sl>=l && sr<=r)
    {
        seg[in]=(sr-sl+1)-seg[in];
        if(sl!=sr){
            lazy[2*in]=!lazy[2*in];
            lazy[2*in+1]=!lazy[2*in+1];
        }
        return;
    }
    int mid=sl+(sr-sl)/2;
    up(in*2,l,r,sl,mid);
    up(in*2+1,l,r,mid+1,sr);
    seg[in]=seg[in*2]+seg[in*2+1];
}
ll sum(int in,int l,int r,int sl,int sr)
{
    if(lazy[in]!=0)
    {
        seg[in]=(sr-sl+1)-seg[in];
        if(sl!=sr){
            lazy[2*in]=!lazy[2*in];
            lazy[2*in+1]=!lazy[2*in+1];
        }
        lazy[in]=0;
    }
    if(r<sl || l>sr || l>r)return 0;
    if(sl>=l && sr<=r)
     return seg[in];
    int mid=sl+(sr-sl)/2;
    return sum(in*2,l,r,sl,mid) + sum(in*2+1,l,r,mid+1,sr);
}
int main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    int n,q;
    cin>>n>>q;
    while(q--)
    {
        int x,l,r;
        cin>>x>>l>>r;
        if(x==0)
        up(1,l,r,0,n-1);
        else{
            cout<<sum(1,l,r,0,n-1)<<"\n";
        }
    }
}
                    


                        Solution in Java :

/* package codechef; // don't place package name! */

import java.util.*;
import java.lang.*;
import java.io.*;

/* Name of the class has to be "Main" only if the class is public. */
class Codechef
{
	public static void main (String[] args) throws java.lang.Exception
	{
		// your code goes here
		InputStream inputStream=System.in;
		InputReader sc = new InputReader(inputStream);
		PrintWriter out=new PrintWriter(System.out);
		int n=sc.nextInt();
		int q=sc.nextInt();
		BitSet bs=new BitSet(n);
		StringBuffer sb=new StringBuffer();
		for(int i=0;i<q;i++)
		{ 
		    int x=sc.nextInt();
		    int a=sc.nextInt();
		    int b=sc.nextInt();
		    if(x==1)
		    {
		        sb.append(bs.get(a,b+1).cardinality()+"\n");
		    }
		    else
		    {
		        bs.flip(a,b+1);
		    }
		}
		System.out.println(sb.toString());
		out.flush();
	}
	static class InputReader {
		public BufferedReader reader;
		public StringTokenizer tokenizer;

		public InputReader(InputStream stream) {
			reader = new BufferedReader(new InputStreamReader(stream), 32768);
			tokenizer = null;
		}

		public String next() {
			while (tokenizer == null || !tokenizer.hasMoreTokens()) {
				try {
				    tokenizer = new StringTokenizer(reader.readLine());
				} catch (IOException e) {
				    throw new RuntimeException(e);
				}
			}
			return tokenizer.nextToken();
		}

		public int nextInt() {
			return Integer.parseInt(next());
		}
	}
}
                    


                        Solution in Python : 
                            
import numpy as np
n,q=map(int,input().split())

dp=np.zeros(n,dtype=bool)
while q>0:
    zero,a,b=map(int,input().split())
    if zero:print(np.count_nonzero(dp[a:b+1]))      
    else:dp[a:b+1]=~dp[a:b+1]
    q-=1
                    


View More Similar Problems

Polynomial Division

Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie

View Solution →

Costly Intervals

Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the

View Solution →

The Strange Function

One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting

View Solution →

Self-Driving Bus

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever

View Solution →

Unique Colors

You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti

View Solution →

Fibonacci Numbers Tree

Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T

View Solution →