Find Merge Point of Two Lists


Problem Statement :


This challenge is part of a tutorial track by MyCodeSchool

Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share a common node, return that node's data  value.

Note: After the merge point, both lists will share the same node pointers.

Example

In the diagram below, the two lists converge at Node x:

[List #1] a--->b--->c
                     \
                      x--->y--->z--->NULL
                     /
     [List #2] p--->q
Function Description

Complete the findMergeNode function in the editor below.

findMergeNode has the following parameters:

SinglyLinkedListNode pointer head1: a reference to the head of the first list
SinglyLinkedListNode pointer head2: a reference to the head of the second list

Returns

int: the data value of the node where the lists merge


Input Format

Do not read any input from stdin/console.

The first line contains an integer t, the number of test cases.



Solution :



title-img


                            Solution in C :

In C :


// Complete the findMergeNode function below.

/*
 * For your reference:
 *
 * SinglyLinkedListNode {
 *     int data;
 *     SinglyLinkedListNode* next;
 * };
 *
 */
#include <math.h>
int findMergeNode(SinglyLinkedListNode *headA, SinglyLinkedListNode *headB)
{
    // Complete this function
    // Do not write the main method. 
    int countA = 0;
    int countB = 0;
    struct SinglyLinkedListNode *tempHeadA, *tempHeadB;
    tempHeadA = headA;
    tempHeadB = headB;
    
    while(tempHeadA != NULL){
        countA++;
        tempHeadA = tempHeadA->next;
    }
    while(tempHeadB != NULL){
        countB++;
        tempHeadB = tempHeadB->next;
    }
    
    // printf("%d %d", countA,countB);
    int biggerNodeExtraNodes = abs(countA - countB);
    // printf("%d", biggerNodeExtraNodes);
    while(biggerNodeExtraNodes--){
         printf("33333333333");
        if(countA > countB){
            headA = headA->next;
        } else{
             headB = headB->next;
        }
    }
    while(headA != NULL){
        printf("asdfghjklpoiuytredxdcfgh");
        if(headA == headB){
            return headA->data;
        }else{
             headA = headA->next;
             headB = headB->next;
        }
    }
    return 1;
}
                        


                        Solution in C++ :

In C++ :

/*
   Find merge point of two linked lists
   Node is defined as
   struct Node
   {
       int data;
       Node* next;
   }
*/
int getCount(Node* head)
{
  Node* current = head;
  int count = 0;
 
  while (current != NULL)
  {
    count++;
    current = current->next;
  }
 
  return count;
}

int getNode(int d, Node* head1, Node* head2)
{
  int i;
  Node* current1 = head1;
  Node* current2 = head2;
 
  for(i = 0; i < d; i++)
  {
    if(current1 == NULL)
    {  return -1; }
    current1 = current1->next;
  }
 
  while(current1 !=  NULL && current2 != NULL)
  {
    if(current1 == current2)
      return current1->data;
    current1= current1->next;
    current2= current2->next;
  }
 
  return -1;
}

int FindMergeNode(Node *headA, Node *headB)
{
    // Complete this function
    // Do not write the main method. 
    int c1 = getCount(headA);
  int c2 = getCount(headB);
  int d;
 
  if(c1 > c2)
  {
    d = c1 - c2;
    return getNode(d, headA, headB);
  }
  else
  {
    d = c2 - c1;
    return getNode(d, headB, headA);
  }
}
                    


                        Solution in Java :

In Java : 



/*
  Insert Node at the end of a linked list 
  head pointer input could be NULL as well for empty list
  Node is defined as 
  class Node {
     int data;
     Node next;
  }
*/
int FindMergeNode(Node headA, Node headB) {
    // Complete this function
    // Do not write the main method. 
      
    int countA=0;
    int countB=0;
    
    Node tempA=headA;
    Node tempB=headB;

    while(tempA!=null)
        {
        countA++;
        tempA=tempA.next;
    }
    
    
    while(tempB!=null)
        {
        countB++;
        tempB=tempB.next;
    }
    int diff=0;
    if(countA>countB)
        diff=countA-countB;
    else
        diff=countB-countA;
    tempA=headA;
    tempB=headB;
    if(countA>countB)
        {
         while(diff >0)
         {tempA=tempA.next;
         diff--;}
        
    }
    else
        {while(diff >0)
        { tempB=tempB.next;
          diff--;}
        
        
        }
    
    while(tempA!=null && tempB!=null)
    {
        
        tempA=tempA.next;
        tempB=tempB.next;
        if(tempA==tempB)
            return tempA.data;
        
    }
    return 0;
    

}
                    


                        Solution in Python : 
                            
In python3 :



"""
 Find the node at which both lists merge and return the data of that node.
 head could be None as well for empty list
 Node is defined as
 
 class Node(object):
 
   def __init__(self, data=None, next_node=None):
       self.data = data
       self.next = next_node

 
"""

def FindMergeNode(a, b):
    h = {}
    while a != None:
        h[a.data] = a.data
        a = a.next
    while b != None:
        if b.data in h:
            return h[b.data]
        b = b.next
    return None
                    


View More Similar Problems

Game of Two Stacks

Alexa has two stacks of non-negative integers, stack A = [a0, a1, . . . , an-1 ] and stack B = [b0, b1, . . . , b m-1] where index 0 denotes the top of the stack. Alexa challenges Nick to play the following game: In each move, Nick can remove one integer from the top of either stack A or stack B. Nick keeps a running sum of the integers he removes from the two stacks. Nick is disqualified f

View Solution →

Largest Rectangle

Skyline Real Estate Developers is planning to demolish a number of old, unoccupied buildings and construct a shopping mall in their place. Your task is to find the largest solid area in which the mall can be constructed. There are a number of buildings in a certain two-dimensional landscape. Each building has a height, given by . If you join adjacent buildings, they will form a solid rectangle

View Solution →

Simple Text Editor

In this challenge, you must implement a simple text editor. Initially, your editor contains an empty string, S. You must perform Q operations of the following 4 types: 1. append(W) - Append W string to the end of S. 2 . delete( k ) - Delete the last k characters of S. 3 .print( k ) - Print the kth character of S. 4 . undo( ) - Undo the last (not previously undone) operation of type 1 or 2,

View Solution →

Poisonous Plants

There are a number of plants in a garden. Each of the plants has been treated with some amount of pesticide. After each day, if any plant has more pesticide than the plant on its left, being weaker than the left one, it dies. You are given the initial values of the pesticide in each of the plants. Determine the number of days after which no plant dies, i.e. the time after which there is no plan

View Solution →

AND xor OR

Given an array of distinct elements. Let and be the smallest and the next smallest element in the interval where . . where , are the bitwise operators , and respectively. Your task is to find the maximum possible value of . Input Format First line contains integer N. Second line contains N integers, representing elements of the array A[] . Output Format Print the value

View Solution →

Waiter

You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the

View Solution →