Costly Intervals
Problem Statement :
Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the elements of Al. . .r. Let AND( l , r ) be the bitwise AND of the elements of Al. . .r. The cost of Al . . .r , denoted cost( l, r ), is defined as The size of Al . . .r is defined as r - l +1. You are given the array and and an integer . For each index from to , your goal is to find the largest size of any subarray such that and . Complete the function costlyIntervals which takes two integers n and k as first line of input, and array A1, A2, . . . , An in the second line of input. Return an array of n integers, where the ith element contains the answer for index i of the input array, 1 <= i <= n. Every element of the output array denotes the largest size of a subarray containing i whose cost is at least k, or -1 if there is no such subarray.
Solution :
Solution in C :
In C++ :
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int Inf = 1000000007;
const int Maxn = 100005;
const int Maxm = 20;
const int Maxb = 31;
int n, k;
int a[Maxn];
int mx[Maxn][Maxm], mn[Maxn][Maxm];
int nxt[Maxn][Maxb][2];
int res[Maxn];
vector <int> add[Maxn], rem[Maxn];
map <int, int> M;
int Get(int ind, int forb, int &Mn, int &Mx, int cur)
{
int pnt = ind;
for (int i = Maxm - 1; i >= 0; i--)
if (pnt + (1 << i) <= forb) {
int candmx = max(Mx, mx[pnt][i]);
int candmn = min(Mn, mn[pnt][i]);
if (ll(cur) - ll(candmx - candmn) >= k) {
Mx = candmx; Mn = candmn;
pnt += 1 << i;
}
}
int res = pnt;
for (int i = Maxm - 1; i >= 0; i--)
if (pnt + (1 << i) <= forb) {
Mx = max(Mx, mx[pnt][i]);
Mn = min(Mn, mn[pnt][i]);
pnt += 1 << i;
}
return res;
}
int main() {
scanf("%d %d", &n, &k);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
mx[i][0] = mn[i][0] = a[i];
}
for (int j = 1; j < Maxm; j++)
for (int i = 1; i + (1 << j) <= n + 1; i++) {
int nxt = i + (1 << j - 1);
mx[i][j] = max(mx[i][j - 1], mx[nxt][j - 1]);
mn[i][j] = min(mn[i][j - 1], mn[nxt][j - 1]);
}
for (int i = 0; i < Maxb; i++)
nxt[n + 1][i][0] = nxt[n + 1][i][1] = n + 1;
for (int i = n; i > 0; i--)
for (int j = 0; j < Maxb; j++)
for (int k = 0; k < 2; k++)
if (bool(a[i] & 1 << j) == k) nxt[i][j][k] = i;
else nxt[i][j][k] = nxt[i + 1][j][k];
for (int i = 1; i <= n; i++) {
int Or = a[i], And = a[i];
int Mn = Inf, Mx = -Inf;
int st = i;
while (st <= n) {
int lim = n + 1;
for (int j = 0; j < Maxb; j++) {
if (!(Or & 1 << j)) lim = min(lim, nxt[st + 1][j][1]);
if (And & 1 << j) lim = min(lim, nxt[st + 1][j][0]);
}
int got = Get(st, lim, Mn, Mx, Or - And);
if (got > st) {
int cand = got - i;
add[i].push_back(cand); rem[got].push_back(cand);
}
for (int j = 0; j < Maxb; j++) {
if (!(Or & 1 << j) && lim == nxt[st + 1][j][1]) Or |= 1 << j;
if (bool(And & 1 << j) && lim == nxt[st + 1][j][0]) And ^= 1 << j;
}
st = lim;
}
}
for (int i = 1; i <= n; i++) {
for (int j = 0; j < add[i].size(); j++)
M[add[i][j]]++;
for (int j = 0; j < rem[i].size(); j++)
if (--M[rem[i][j]] == 0) M.erase(rem[i][j]);
if (!M.empty()) {
map <int, int>::iterator it = M.end(); it--;
printf("%d\n", it->first);
} else printf("-1\n");
}
return 0;
}
In Java :
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.TreeSet;
public class D2 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni(), K = ni();
int[] a = na(n);
int[] ra = new int[n];
for(int i = 0;i < n;i++)ra[i] = -a[i];
int[][] stmin = build(a);
int[][] stmax = build(ra);
int[][] efs = new int[80*n][];
int efp = 0;
int esp = 0;
int[][] oas = new int[0][];
for(int i = n-1;i >= 0;i--){
int[][] noas = new int[40][];
int p = 0;
for(int j = 0;j < oas.length;j++){
oas[j][0] |= a[i];
oas[j][1] &= a[i];
if(p > 0 && noas[p-1][0] == oas[j][0] &&
noas[p-1][1] == oas[j][1]){
noas[p-1][2] = oas[j][2];
}else{
noas[p++] = oas[j];
}
}
if(!(p > 0 && noas[p-1][0] == a[i] &&
noas[p-1][1] == a[i])){
noas[p++] = new int[]{a[i], a[i], i};
}else{
noas[p-1][2] = i;
}
oas = Arrays.copyOf(noas, p);
// tr(i, oas);
int to = n;
for(int[] oa : oas){
// [oa[2], to)
int cha = oa[0] - oa[1];
int low = oa[2]-1, high = to;
while(high - low > 1){
int h = high+low>>1;
// [i,h]
// tr(h, oa, to, cha, -rmq(stmax, i, h+1) - rmq(stmin, i, h+1));
if(cha - (-rmq(stmax, i, h+1) - rmq(stmin, i, h+1)) >= K){
low = h;
}else{
high = h;
}
}
if(low >= oa[2]){
// tr(i, oa, to, low);
efs[efp++] = new int[]{i, low - i + 1, i};
efs[efp++] = new int[]{low+1, low - i + 1, i};
}
to = oa[2];
}
}
int I = -1;
int[] anss = new int[n];
Arrays.fill(anss, I);
Arrays.sort(efs, 0, efp, new Comparator<int[]>() {
public int compare(int[] a, int[] b) {
return a[0] - b[0];
}
});
TreeSet<Long> set = new TreeSet<Long>();
int q = 0;
for(int i = 0;i < n;i++){
while(q < efp && efs[q][0] <= i){
long code = (long)efs[q][1]<<32|efs[q][2];
if(set.contains(code)){
set.remove(code);
}else{
set.add(code);
}
q++;
}
if(!set.isEmpty()){
Long first = set.last();
anss[i] = Math.max(anss[i], (int)(first>>>32));
}
}
for(int v : anss){
out.println(v);
}
}
public static int[][] build(int[] a)
{
int n = a.length;
int b = 32-Integer.numberOfLeadingZeros(n);
int[][] ret = new int[b][];
for(int i = 0, l = 1;i < b;i++, l*=2) {
if(i == 0) {
ret[i] = a;
}else {
ret[i] = new int[n-l+1];
for(int j = 0;j < n-l+1;j++) {
ret[i][j] = Math.min(ret[i-1][j], ret[i-1][j+l/2]);
}
}
}
return ret;
}
// [a,b)
public static int rmq(int[][] or, int l, int r)
{
assert l <= r;
if(l >= r)return Integer.MAX_VALUE;
// 1:0, 2:1, 3:1, 4:2, 5:2, 6:2, 7:2, 8:3
int t = 31-Integer.numberOfLeadingZeros(r-l);
return Math.min(or[t][l], or[t][r-(1<<t)]);
}
void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new D2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
In C :
#include <stdio.h>
#include <stdlib.h>
#define INF 200000
int get(int l,int r);
int max(int x,int y);
int min(int x,int y);
void init( int n );
void range_increment( int i, int j, int val );
int query( int i );
void sort_a(int*a,int size,int*new_size);
void merge(int*a,int*left,int*right,int left_size, int right_size,int*new_size);
int N,a[100000],b[100000],map[100001],dp[4][100000][18],dp1[30][100000],dp2[30][100000],tree[400000];
int main(){
int n,k,s,ns,h,l,m,i,j;
scanf("%d%d",&n,&k);
for(i=j=1,map[0]=0;i<=100000;i++)
if(j*2<=i){
j*=2;
map[i]=map[i-1]+1;
}
else
map[i]=map[i-1];
for(i=0;i<n;i++)
scanf("%d",a+i);
for(i=0;i<n;i++)
dp[0][i][0]=dp[1][i][0]=dp[2][i][0]=dp[3][i][0]=a[i];
for(j=1;1<<j<=n;j++)
for(i=0;i+(1<<j)-1<n;i++){
dp[0][i][j]=max(dp[0][i][j-1],dp[0][i+(1<<(j-1))][j-1]);
dp[1][i][j]=min(dp[1][i][j-1],dp[1][i+(1<<(j-1))][j-1]);
dp[2][i][j]=dp[2][i][j-1]|dp[2][i+(1<<(j-1))][j-1];
dp[3][i][j]=dp[3][i][j-1]&dp[3][i+(1<<(j-1))][j-1];
}
for(i=0;i<n;i++)
for(j=0;j<30;j++)
if(a[i]&(1<<j)){
dp1[j][i]=i;
dp2[j][i]=INF;
}
else{
dp1[j][i]=INF;
dp2[j][i]=i;
}
for(i=n-2;i>=0;i--)
for(j=0;j<30;j++){
dp1[j][i]=min(dp1[j][i],dp1[j][i+1]);
dp2[j][i]=min(dp2[j][i],dp2[j][i+1]);
}
init(n);
for(i=0;i<n;i++){
for(j=s=0;j<30;j++){
if(dp1[j][i]!=INF)
b[s++]=dp1[j][i];
if(dp2[j][i]!=INF)
b[s++]=dp2[j][i];
}
sort_a(b,s,&ns);
for(j=ns-1;j>=0;j--)
if(get(i,b[j])>=k){
if(j==ns-1)
h=n-1;
else
h=b[j+1]-1;
l=s=b[j];
while(l<=h){
m=(h+l)/2;
if(get(i,m)>=k){
s=m;
l=m+1;
}
else
h=m-1;
}
range_increment(i,s,s-i+1);
break;
}
}
for(i=0;i<n;i++)
printf("%d\n",query(i));
return 0;
}
int get(int l,int r){
int a,b,c,d,len;
len=map[r-l+1];
a=max(dp[0][l][len],dp[0][r-(1<<len)+1][len]);
b=min(dp[1][l][len],dp[1][r-(1<<len)+1][len]);
c=dp[2][l][len]|dp[2][r-(1<<len)+1][len];
d=dp[3][l][len]&dp[3][r-(1<<len)+1][len];
return c-d-a+b;
}
int max(int x,int y){
return (x>y)?x:y;
}
int min(int x,int y){
return (x<y)?x:y;
}
void init( int n )
{
N = 1;
while( N < n ) N *= 2;
int i;
for( i = 1; i < N + n; i++ ) tree[i] = -1;
}
void range_increment( int i, int j, int val )
{
for( i += N, j += N; i <= j; i = ( i + 1 ) / 2, j = ( j - 1 ) / 2 )
{
if( i % 2 == 1 ) tree[i] = max(val,tree[i]);
if( j % 2 == 0 ) tree[j] = max(val,tree[j]);
}
}
int query( int i )
{
int ans = -1,j;
for( j = i + N; j; j /= 2 ) ans = max(tree[j],ans);
return ans;
}
void sort_a(int*a,int size,int*new_size){
if (size < 2){
(*new_size)=size;
return;
}
int m = (size+1)/2,i;
int *left,*right;
left=(int*)malloc(m*sizeof(int));
right=(int*)malloc((size-m)*sizeof(int));
for(i=0;i<m;i++)
left[i]=a[i];
for(i=0;i<size-m;i++)
right[i]=a[i+m];
int new_l_size=0,new_r_size=0;
sort_a(left,m,&new_l_size);
sort_a(right,size-m,&new_r_size);
merge(a,left,right,new_l_size,new_r_size,new_size);
free(left);
free(right);
return;
}
void merge(int*a,int*left,int*right,int left_size, int right_size,int*new_size){
int i = 0, j = 0,index=0;
while (i < left_size|| j < right_size) {
if (i == left_size) {
a[index++] = right[j];
j++;
} else if (j == right_size) {
a[index++] = left[i];
i++;
} else if (left[i] <= right[j]) {
a[index++] = left[i];
i++;
} else {
a[index++] = right[j];
j++;
}
if(index>1&&a[index-2]==a[index-1])
index--;
}
(*new_size)=index;
return;
}
In Python3 :
import sys
def cost(a):
x = 0
y = 1
for i in a:
x |= i
y &= i
return((x-y)-(max(a)-min(a)))
def costlyIntervals(n, k, A):
ans = []
for m in range(n):
cs = -1
for i in range(0,n-1):
for j in range(i,n):
l = A[i:j+1]
if A[m] in l:
x = cost(l)
if x >= k:
cs = max(cs,len(l))
ans.append(cs)
return(ans)
if __name__ == "__main__":
n, k = input().strip().split(' ')
n, k = [int(n), int(k)]
A = list(map(int, input().strip().split(' ')))
result = costlyIntervals(n, k, A)
print ("\n".join(map(str, result)))
View More Similar Problems
Subsequence Weighting
A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =
View Solution →Kindergarten Adventures
Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti
View Solution →Mr. X and His Shots
A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M
View Solution →Jim and the Skyscrapers
Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space
View Solution →Palindromic Subsets
Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t
View Solution →Counting On a Tree
Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n
View Solution →