Cheapest Cost to All Cities - Google Top Interview Questions
Problem Statement :
You are given two lists of integers costs_from and costs_to of the same length where each index i represents a city. Building a one-way road from city i to j costs costs_from[i] + costs_to[j]. You are also given a two-dimensional list of integers edges where each list contains [x, y] meaning there's already a one-way road from city x to y. Given that we want to be able to go to any city from city 0 (not necessarily in one path), return the minimum cost to build the necessary roads. Constraints n ≤ 1,000 where n is the length of costs_from and costs_to m ≤ 100,000 where m is the length of edges Example 1 Input costs_from = [5, 1, 1, 10] costs_to = [1, 1, 2, 1] edges = [ [0, 3] ] Output 9 Explanation We can go 0 to 2 for a cost of 7. Then, we can go 2 to 1 for a cost of 2. We already have the ability to go to 3 from 0 for free.
Solution :
Solution in C++ :
const int M = 1000000;
const int N = 1000;
struct edg {
int u, v;
int cost;
} E[M], E_copy[M];
int In[N], ID[N], vis[N], pre[N];
int Directed_MST(int root, int NV, int NE) {
for (int i = 0; i < NE; i++) {
E_copy[i] = E[i];
}
int ret = 0;
int u, v;
while (true) {
for (int i = 0; i < NV; i++) {
In[i] = 2000000000;
}
for (int i = 0; i < NE; i++) {
u = E_copy[i].u;
v = E_copy[i].v;
if (E_copy[i].cost < In[v] && u != v) {
In[v] = E_copy[i].cost;
pre[v] = u;
}
}
int cnt = 0;
for (int i = 0; i < NV; i++) {
ID[i] = -1;
vis[i] = -1;
}
In[root] = 0;
// check for cycles
for (int i = 0; i < NV; i++) {
ret += In[i];
int v = i;
while (vis[v] != i && ID[v] == -1 && v != root) {
vis[v] = i;
v = pre[v];
}
if (v != root && ID[v] == -1) {
for (u = pre[v]; u != v; u = pre[u]) {
ID[u] = cnt;
}
ID[v] = cnt++;
}
}
// check if there are no cycles
if (cnt == 0) {
break;
}
// condense cycles
for (int i = 0; i < NV; i++) {
if (ID[i] == -1) {
ID[i] = cnt++;
}
}
for (int i = 0; i < NE; i++) {
v = E_copy[i].v;
E_copy[i].u = ID[E_copy[i].u];
E_copy[i].v = ID[E_copy[i].v];
if (E_copy[i].u != E_copy[i].v) {
E_copy[i].cost -= In[v];
}
}
NV = cnt;
root = ID[root];
}
return ret;
}
int solve(vector<int>& costs_from, vector<int>& costs_to, vector<vector<int>>& edges) {
int n = costs_from.size();
vector<pair<int, int>> v;
for (auto& e : edges) {
v.emplace_back(e[0], e[1]);
}
sort(v.begin(), v.end());
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
pair<int, int> key = make_pair(i, j);
auto it = lower_bound(v.begin(), v.end(), key);
if (it != v.end() && *it == key) {
E[i * n + j].cost = 0;
} else {
E[i * n + j].cost = costs_from[i] + costs_to[j];
}
E[i * n + j].u = i;
E[i * n + j].v = j;
}
}
return Directed_MST(0, n, n * n);
}
Solution in Java :
import java.util.*;
class Solution {
public int solve(int[] costs_from, int[] costs_to, int[][] edges) {
int n = costs_to.length;
ArrayList<Integer>[] es = new ArrayList[n];
int[] rd = new int[n], low = new int[n], st = new int[n], en = new int[n];
for (int i = 0; i < n; ++i) {
rd[i] = -1;
st[i] = costs_from[i];
en[i] = costs_to[i];
}
Arrays.fill(low, n + 1);
boolean[] path = new boolean[n], seen = new boolean[n];
for (int[] e : edges) {
if (es[e[0]] == null)
es[e[0]] = new ArrayList();
es[e[0]].add(e[1]);
}
int from = mark(es, 0, seen, costs_from), res = 0;
for (int i = 1; i < n; ++i) {
if (!seen[i]) {
ArrayList<Integer> al = new ArrayList();
int[] ms = new int[1];
ms[0] = costs_from[i];
int t = costs_to[i];
traverse(es, st, rd, 0, low, new Stack<Integer>(), al, i, seen, path, ms, i);
for (int a : al) {
rd[a] = i;
st[a] = ms[0];
t = Math.min(t, costs_to[a]);
}
for (int a : al) {
en[a] = t;
}
}
}
ArrayList<int[]> al = new ArrayList();
for (int i = 1; i < n; ++i) {
int t = find(rd, i);
if (t >= 0) {
rd[t] = -1;
al.add(new int[] {st[t], en[t]});
}
}
if (al.size() == 0)
return 0;
Collections.sort(al, (a, b) -> (a[0] - b[0]));
for (int[] d : al) {
res += from + d[1];
from = Math.min(from, d[0]);
}
return res;
}
private int mark(ArrayList<Integer>[] es, int idx, boolean[] seen, int[] fr) {
seen[idx] = true;
int res = fr[idx];
if (es[idx] != null) {
for (int a : es[idx]) {
if (!seen[a]) {
int t = mark(es, a, seen, fr);
res = Math.min(res, t);
}
}
}
return res;
}
private int find(int[] rd, int idx) {
while (idx >= 0 && idx != rd[idx]) {
int t = rd[idx];
if (t >= 0)
rd[idx] = rd[t];
idx = rd[idx];
}
return idx;
}
private void traverse(ArrayList<Integer>[] es, int[] st, int[] rd, int h, int[] low,
Stack<Integer> sta, ArrayList<Integer> al, int idx, boolean[] seen, boolean[] path,
int[] ms, int root) {
seen[idx] = true;
low[idx] = h;
path[idx] = true;
sta.push(idx);
if (es[idx] != null) {
for (int a : es[idx]) {
ms[0] = Math.min(ms[0], st[a]);
int t = find(rd, a);
if (t >= 0)
rd[t] = -1;
if (!seen[a]) {
traverse(es, st, rd, h + 1, low, sta, al, a, seen, path, ms, root);
low[idx] = Math.min(low[idx], low[a]);
} else if (path[a]) {
low[idx] = Math.min(low[idx], low[a]);
}
}
}
if (low[idx] == h) {
while (!sta.isEmpty()) {
int t = sta.pop();
if (idx == root)
al.add(t);
path[t] = false;
if (t == idx)
break;
}
}
}
}
Solution in Python :
class Solution:
def solve(self, costs_from, costs_to, edges):
adj = defaultdict(list)
for u, v in edges:
if v != 0:
adj[u].append(v)
idx = -1
start = {}
lowlink = {}
s = []
in_stack = set()
scc = {}
root = {}
def tarjan(v):
nonlocal idx
idx += 1
start[v] = idx
lowlink[v] = idx
s.append(v)
in_stack.add(v)
for n in adj[v]:
if n not in start:
tarjan(n)
lowlink[v] = min(lowlink[v], lowlink[n])
elif n in in_stack:
lowlink[v] = min(lowlink[v], start[n])
if lowlink[v] == start[v]:
new_scc = []
while s[-1] != v:
in_stack.remove(s[-1])
root[s[-1]] = v
new_scc.append(s.pop())
in_stack.remove(s[-1])
root[s[-1]] = v
new_scc.append(s.pop())
scc[v] = new_scc
for i in range(len(costs_from)):
if i not in start:
tarjan(i)
new_adj = defaultdict(set)
new_from = {}
new_to = {}
for r in scc:
to = fr = float("inf")
for n in scc[r]:
to = min(to, costs_to[n])
fr = min(fr, costs_from[n])
new_adj[r].update(root[k] for k in adj[n])
new_from[r] = fr
new_to[r] = to
visited = set()
sources = {}
def dfs(cur):
m = new_from[cur]
for n in new_adj[cur]:
if n in sources:
m = min(m, sources[n])
del sources[n]
elif n not in visited:
visited.add(n)
m = min(m, dfs(n))
return m
for v in new_to.keys():
if v not in visited:
visited.add(v)
sources[v] = dfs(v)
src = min(sources.keys(), key=sources.get)
res = sources[0] - sources[src]
for v in sources:
if v != 0:
res += sources[src] + new_to[v]
return res
View More Similar Problems
Super Maximum Cost Queries
Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and
View Solution →Contacts
We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co
View Solution →No Prefix Set
There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio
View Solution →Cube Summation
You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor
View Solution →Direct Connections
Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do
View Solution →Subsequence Weighting
A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =
View Solution →