# Cheapest Cost to All Cities - Google Top Interview Questions

### Problem Statement :

```You are given two lists of integers costs_from and costs_to of the same length where each index i represents a city.

Building a one-way road from city i to j costs costs_from[i] + costs_to[j].

You are also given a two-dimensional list of integers edges where each list contains [x, y] meaning there's already a one-way road from city x to y.

Given that we want to be able to go to any city from city 0 (not necessarily in one path), return the minimum cost to build the necessary roads.

Constraints

n ≤ 1,000 where n is the length of costs_from and costs_to

m ≤ 100,000 where m is the length of edges

Example 1

Input

costs_from = [5, 1, 1, 10]

costs_to = [1, 1, 2, 1]

edges = [

[0, 3]

]

Output

9

Explanation

We can go 0 to 2 for a cost of 7. Then, we can go 2 to 1 for a cost of 2. We already have the ability to go

### Solution :

```                        ```Solution in C++ :

const int M = 1000000;
const int N = 1000;

struct edg {
int u, v;
int cost;
} E[M], E_copy[M];

int In[N], ID[N], vis[N], pre[N];

int Directed_MST(int root, int NV, int NE) {
for (int i = 0; i < NE; i++) {
E_copy[i] = E[i];
}
int ret = 0;
int u, v;
while (true) {
for (int i = 0; i < NV; i++) {
In[i] = 2000000000;
}
for (int i = 0; i < NE; i++) {
u = E_copy[i].u;
v = E_copy[i].v;
if (E_copy[i].cost < In[v] && u != v) {
In[v] = E_copy[i].cost;
pre[v] = u;
}
}

int cnt = 0;
for (int i = 0; i < NV; i++) {
ID[i] = -1;
vis[i] = -1;
}
In[root] = 0;

// check for cycles
for (int i = 0; i < NV; i++) {
ret += In[i];
int v = i;
while (vis[v] != i && ID[v] == -1 && v != root) {
vis[v] = i;
v = pre[v];
}
if (v != root && ID[v] == -1) {
for (u = pre[v]; u != v; u = pre[u]) {
ID[u] = cnt;
}
ID[v] = cnt++;
}
}
// check if there are no cycles
if (cnt == 0) {
break;
}

// condense cycles
for (int i = 0; i < NV; i++) {
if (ID[i] == -1) {
ID[i] = cnt++;
}
}
for (int i = 0; i < NE; i++) {
v = E_copy[i].v;
E_copy[i].u = ID[E_copy[i].u];
E_copy[i].v = ID[E_copy[i].v];
if (E_copy[i].u != E_copy[i].v) {
E_copy[i].cost -= In[v];
}
}
NV = cnt;
root = ID[root];
}
return ret;
}

int solve(vector<int>& costs_from, vector<int>& costs_to, vector<vector<int>>& edges) {
int n = costs_from.size();
vector<pair<int, int>> v;
for (auto& e : edges) {
v.emplace_back(e, e);
}
sort(v.begin(), v.end());
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
pair<int, int> key = make_pair(i, j);
auto it = lower_bound(v.begin(), v.end(), key);
if (it != v.end() && *it == key) {
E[i * n + j].cost = 0;
} else {
E[i * n + j].cost = costs_from[i] + costs_to[j];
}
E[i * n + j].u = i;
E[i * n + j].v = j;
}
}
return Directed_MST(0, n, n * n);
}```
```

```                        ```Solution in Java :

import java.util.*;

class Solution {
public int solve(int[] costs_from, int[] costs_to, int[][] edges) {
int n = costs_to.length;
ArrayList<Integer>[] es = new ArrayList[n];
int[] rd = new int[n], low = new int[n], st = new int[n], en = new int[n];
for (int i = 0; i < n; ++i) {
rd[i] = -1;
st[i] = costs_from[i];
en[i] = costs_to[i];
}
Arrays.fill(low, n + 1);
boolean[] path = new boolean[n], seen = new boolean[n];
for (int[] e : edges) {
if (es[e] == null)
es[e] = new ArrayList();
}
int from = mark(es, 0, seen, costs_from), res = 0;
for (int i = 1; i < n; ++i) {
if (!seen[i]) {
ArrayList<Integer> al = new ArrayList();
int[] ms = new int;
ms = costs_from[i];
int t = costs_to[i];
traverse(es, st, rd, 0, low, new Stack<Integer>(), al, i, seen, path, ms, i);
for (int a : al) {
rd[a] = i;
st[a] = ms;
t = Math.min(t, costs_to[a]);
}
for (int a : al) {
en[a] = t;
}
}
}
ArrayList<int[]> al = new ArrayList();
for (int i = 1; i < n; ++i) {
int t = find(rd, i);
if (t >= 0) {
rd[t] = -1;
}
}
if (al.size() == 0)
return 0;
Collections.sort(al, (a, b) -> (a - b));
for (int[] d : al) {
res += from + d;
from = Math.min(from, d);
}
return res;
}
private int mark(ArrayList<Integer>[] es, int idx, boolean[] seen, int[] fr) {
seen[idx] = true;
int res = fr[idx];
if (es[idx] != null) {
for (int a : es[idx]) {
if (!seen[a]) {
int t = mark(es, a, seen, fr);
res = Math.min(res, t);
}
}
}
return res;
}
private int find(int[] rd, int idx) {
while (idx >= 0 && idx != rd[idx]) {
int t = rd[idx];
if (t >= 0)
rd[idx] = rd[t];
idx = rd[idx];
}
return idx;
}
private void traverse(ArrayList<Integer>[] es, int[] st, int[] rd, int h, int[] low,
Stack<Integer> sta, ArrayList<Integer> al, int idx, boolean[] seen, boolean[] path,
int[] ms, int root) {
seen[idx] = true;
low[idx] = h;
path[idx] = true;
sta.push(idx);
if (es[idx] != null) {
for (int a : es[idx]) {
ms = Math.min(ms, st[a]);
int t = find(rd, a);
if (t >= 0)
rd[t] = -1;
if (!seen[a]) {
traverse(es, st, rd, h + 1, low, sta, al, a, seen, path, ms, root);
low[idx] = Math.min(low[idx], low[a]);
} else if (path[a]) {
low[idx] = Math.min(low[idx], low[a]);
}
}
}
if (low[idx] == h) {
while (!sta.isEmpty()) {
int t = sta.pop();
if (idx == root)
path[t] = false;
if (t == idx)
break;
}
}
}
}```
```

```                        ```Solution in Python :

class Solution:
def solve(self, costs_from, costs_to, edges):
for u, v in edges:
if v != 0:

idx = -1
start = {}
s = []
in_stack = set()
scc = {}
root = {}

def tarjan(v):
nonlocal idx
idx += 1
start[v] = idx
s.append(v)

if n not in start:
tarjan(n)
elif n in in_stack:

new_scc = []
while s[-1] != v:
in_stack.remove(s[-1])
root[s[-1]] = v
new_scc.append(s.pop())

in_stack.remove(s[-1])
root[s[-1]] = v
new_scc.append(s.pop())

scc[v] = new_scc

for i in range(len(costs_from)):
if i not in start:
tarjan(i)

new_from = {}
new_to = {}

for r in scc:
to = fr = float("inf")
for n in scc[r]:
to = min(to, costs_to[n])
fr = min(fr, costs_from[n])

new_from[r] = fr
new_to[r] = to

visited = set()
sources = {}

def dfs(cur):
m = new_from[cur]
if n in sources:
m = min(m, sources[n])
del sources[n]
elif n not in visited:
m = min(m, dfs(n))

return m

for v in new_to.keys():
if v not in visited:
sources[v] = dfs(v)

src = min(sources.keys(), key=sources.get)
res = sources - sources[src]
for v in sources:
if v != 0:
res += sources[src] + new_to[v]

return res```
```

## Simple Text Editor

In this challenge, you must implement a simple text editor. Initially, your editor contains an empty string, S. You must perform Q operations of the following 4 types: 1. append(W) - Append W string to the end of S. 2 . delete( k ) - Delete the last k characters of S. 3 .print( k ) - Print the kth character of S. 4 . undo( ) - Undo the last (not previously undone) operation of type 1 or 2,

## Poisonous Plants

There are a number of plants in a garden. Each of the plants has been treated with some amount of pesticide. After each day, if any plant has more pesticide than the plant on its left, being weaker than the left one, it dies. You are given the initial values of the pesticide in each of the plants. Determine the number of days after which no plant dies, i.e. the time after which there is no plan

## AND xor OR

Given an array of distinct elements. Let and be the smallest and the next smallest element in the interval where . . where , are the bitwise operators , and respectively. Your task is to find the maximum possible value of . Input Format First line contains integer N. Second line contains N integers, representing elements of the array A[] . Output Format Print the value

## Waiter

You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the

## Queue using Two Stacks

A queue is an abstract data type that maintains the order in which elements were added to it, allowing the oldest elements to be removed from the front and new elements to be added to the rear. This is called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the one that has been waiting the longest) is always the first one to be removed. A basic que

## Castle on the Grid

You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal. Function Description Complete the minimumMoves function in the editor. minimumMoves has the following parameter(s):