Brick Tiling
Problem Statement :
You are given a grid having N rows and M columns. A grid square can either be blocked or empty. Blocked squares are represented by a '#' and empty squares are represented by '.'. Find the number of ways to tile the grid using L shaped bricks. A L brick has one side of length three units while other of length 2 units. All empty squares in the grid should be covered by exactly one of the L shaped tiles, and blocked squares should not be covered by any tile. The bricks can be used in any orientation (they can be rotated or flipped). Input Format The first line contains the number of test cases T. T test cases follow. Each test case contains N and M on the first line, followed by N lines describing each row of the grid. Constraints 1 <= T <= 50 1 <= N <= 20 1 <= M <= 8 Each grid square will be either '.' or '#'. Output Format Output the number of ways to tile the grid. Output each answer modulo 1000000007.
Solution :
Solution in C :
In C++ :
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
#include <complex>
using namespace std;
// begin insert defines
void Bit(int x, int len = 4, int b = 2) {
vector<int> v;
while (x) {
v.push_back(x % b);
x /= b;
}
while ((int)v.size() < len) v.push_back(0);
for (size_t i = 0; i < v.size(); i++)
cout << v[i];
cout << endl;
}
#define two(x) (1<<(x))
#define Rep(i,n) for(int n_ = (n), i = 0; i< n_; ++i)
// end insert defines
const int MOD = 1000000007, N = 20, M = 8, B = 1 << M;
int n, m;
int b[N + 2];
int f[2][B][B], cur;
inline void madd(int &a, int b)
{
a += b;
if (a >= MOD) a -= MOD;
}
void dfs(int s0, int s1, int s2, int y, int v)
{
if (y >= m) {
madd(f[cur][s1][s2], v);
// Bit(s0), Bit(s1), Bit(s2);
// cout << v << endl;
return ;
}
if (two(y) & s0) {
dfs(s0, s1, s2, y + 1, v);
return ;
}
if (y + 3 <= m) {
if (!((s0 >> y) & 7)) {
// ***
// *
if (!(two(y) & s1)) {
dfs(s0, s1 | two(y), s2, y + 3, v);
}
// ***
// *
if (!(two(y + 2) & s1)) {
dfs(s0, s1 | two(y + 2), s2, y + 3, v);
}
}
// *
// ***
if (!((s1 >> y) & 7)) {
dfs(s0, s1 | (7 << y), s2, y + 1, v);
}
}
// *
// ***
if (y >= 2 && !((s1 >> (y - 2)) & 7)) {
dfs(s0, s1 | (7 << (y - 2)), s2, y + 1, v);
}
if (y + 2 <= m) {
if (!(two(y + 1) & s0)) {
// **
// *
// *
if (!(two(y) & s1) && !(two(y) & s2)) {
dfs(s0, s1 | two(y), s2 | two(y), y + 2, v);
}
// **
// *
// *
if (!(two(y + 1) & s1) && !(two(y + 1) & s2)) {
dfs(s0, s1 | two(y + 1), s2 | two(y + 1), y + 2, v);
}
}
// *
// *
// **
if (!(two(y) & s1) && !((s2 >> y) & 3)) {
dfs(s0, s1 | two(y), s2 | (3 << y), y + 1, v);
}
}
// *
// *
// **
if (y > 0 && !(two(y) & s1) && !((s2 >> (y - 1)) & 3)) {
dfs(s0, s1 | two(y), s2 | (3 << (y - 1)), y + 1, v);
}
}
int main(int argc, char *argv[])
{
int T;
cin >> T;
Rep(Ca, T) {
cin >> n >> m;
memset(b, 0, sizeof(b));
Rep(i, n) {
string s;
cin >> s;
Rep(j, m) if (s[j] == '#') b[i] |= two(j);
}
memset(f[!cur], 0, sizeof(f[!cur]));
f[!cur][two(m) - 1][two(m) - 1] = 1;
for (int lv = 0; lv < n + 1; lv++, cur = !cur) {
// cout << "lv: " << lv << endl;
memset(f[cur], 0, sizeof(f[cur]));
Rep(s0, two(m)) Rep(s1, two(m))
if (f[!cur][s0][s1])
dfs(s0, s1, b[lv], 0, f[!cur][s0][s1]);
}
cout << f[!cur][two(m) - 1][0] << endl;
}
return 0;
}
In Java :
import java.io.*;
import java.util.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
private static final int MOD = 1000000007;
private static final int[][] pieceMasks = new int[][] { {0,7,1,4}, {-2,2,-1,2,0,3},
{0,1,1,7}, {0,3,1,1,2,1},
{-1,4,0,7}, {0,1,1,1,2,3},
{0,7,1,1}, {0,3,1,2,2,2}};
private int numCols, numRows;
private int[] startState;
private HashMap<String, Long> dp;
Solution(String[] grid, int numRows, int numCols) {
this.numRows = numRows;
this.numCols = numCols;
dp = new HashMap<String, Long>();
int[] start = new int[numCols];
for (int i = 0; i < numCols; i++) {
start[i] = Integer.MAX_VALUE;
}
for (int i = 0; i < grid.length; i++) {
String row = grid[i];
for (int j = 0; j < row.length(); j++) {
if (row.charAt(j) == '.') {
start[j] = start[j] ^ (1 << i);
}
}
}
startState = start;
}
private boolean isFilled(int[] state) {
for (int i: state) {
if (i < Integer.MAX_VALUE) { return false; }
}
return true;
}
private int[] addShape(int[] shape, int[] state, int col, int row) {
int[] output = state.clone();
for (int i = 0; i < shape.length; i+=2) {
output[col+shape[i]] = output[col+shape[i]] | (shape[i+1] << row);
}
return output;
}
private boolean willShapeFit(int[] shape, int[] state, int col, int row) {
for (int i = 0; i < shape.length; i+=2) {
int colIdx = col + shape[i];
if (colIdx < 0 || colIdx >= numCols) { return false; }
if ((state[colIdx] & (shape[i + 1] << row)) != 0) {
return false;
}
}
return true;
}
private int[] nextEmpty(int[] state, int row, int col) {
int[] output = null;
while (row < numRows) {
if ((state[col] & (1 << row)) == 0) {
return new int[] {row, col};
}
row = (col + 1 == numCols) ? row + 1 : row;
col = (col + 1) % numCols;
}
return output;
}
private long helper(int[] state, int row, int col) {
String stateString = Arrays.toString(state);
if (dp.get(stateString) != null) { return dp.get(stateString); }
long output = 0;
for (int[] shape : pieceMasks) {
if (willShapeFit(shape, state, col, row)) {
int[] nextState = addShape(shape, state, col, row);
int[] nextIdx = nextEmpty(nextState, row, col);
if (nextIdx == null) {
output += 1;
}
else {
output += helper(nextState, nextIdx[0], nextIdx[1]);
}
}
}
dp.put(Arrays.toString(state), output);
return output % MOD;
}
public long solve() {
int[] empty = nextEmpty(startState, 0, 0);
return (empty == null) ? 1 : helper(startState, empty[0], empty[1]);
}
public static void main(String args[] ) throws Exception {
Scanner scanner = new Scanner(System.in);
int t = scanner.nextInt();
while (t > 0) {
int numRows = scanner.nextInt();
int numCols = scanner.nextInt();
String[] grid = new String[numRows];
Pattern p = Pattern.compile("[.#]+");
for (int i = 0; i < numRows; i++) {
grid[i] = scanner.next(p);
}
Solution solution = new Solution(grid, numRows, numCols);
System.out.println(solution.solve());
t--;
}
}
}
In C :
#include <stdio.h>
#include <stdlib.h>
#define MOD 1000000007
void solve1(int cas,int bit,int m2,int m3);
void solve2(int row,int m);
int c[3][8]={
{ 1, 1, 1, 1, 2, 2, 3, 3},
{ 3, 3, 1, 1, 1, 1, 1, 1},
{ 0, 0, 2, 2, 1, 1, 0, 0}
};
int o[3][8]={
{ 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 0, 0, 0,-1, 0,-2},
{ 0, 0, 0, 1, 0,-1, 0, 0}
};
int *count,**dp1;
long long **dp2;
char *table;
int main(){
int T,N,M,i,j,k,m;
char str[10];
count=(int*)malloc(300*sizeof(int));
dp1=(int**)malloc(300*sizeof(int*));
for(i=0;i<300;i++)
dp1[i]=(int*)malloc(1000*sizeof(int));
dp2=(long long**)malloc(20*sizeof(long long*));
for(i=0;i<20;i++)
dp2[i]=(long long*)malloc(70000*sizeof(long long));
table=(char*)malloc(20*sizeof(char));
for(i=0;i<300;i++)
count[i]=0;
for(i=0;i<256;i++)
solve1(i,7,0,0);
scanf("%d",&T);
while(T--){
for(i=0;i<20;i++)
for(j=0;j<70000;j++)
dp2[i][j]=-1;
scanf("%d%d",&N,&M);
for(i=0;i<N;i++){
scanf("%s",str);
table[i]=-1;
for(j=0,k=1;j<M;j++,k<<=1)
if(str[j]=='.')
table[i]^=k;
}
m=((((int)table[N-1])&((1<<8)-1))<<8)|(((int)table[N-2])&((1<<8)-1));
solve2(N-1,m);
printf("%lld\n",dp2[N-1][m]);
}
return 0;
}
void solve1(int cas,int bit,int m2,int m3){
int i=1<<bit,j,ls,t,tm2,tm3;
while(bit>=0 && (i&cas)){
bit--;
i>>=1;
}
if(bit==-1){
dp1[cas][count[cas]++]=(m2<<8)|m3;
return;
}
for(j=0;j<8;j++){
tm3=m3;
if(c[2][j]>0){
t=-1;
t=(t>>c[2][j])<<c[2][j];
t=~t;
ls=bit-o[2][j]-c[0][j]+1;
if(ls<0)
continue;
t<<=ls;
if(t&m3 || t>=256)
continue;
tm3=m3|t;
}
t=-1;
t=(t>>c[1][j])<<c[1][j];
t=~t;
ls=bit-o[1][j]-c[0][j]+1;
if(ls<0)
continue;
t<<=ls;
if(t&m2 || t>=256)
continue;
tm2=m2|t;
t=-1;
t=(t>>c[0][j])<<c[0][j];
t=~t;
ls=bit-c[0][j]+1;
if(ls<0)
continue;
t<<=ls;
if(t&cas || t>=256)
continue;
solve1(cas,bit-c[0][j],tm2,tm3);
}
return;
}
void solve2(int row,int m){
int i,m2,m3,t2;
long long ans=0;
if(row==1)
for(i=0;i<count[m>>8];i++){
m2=dp1[m>>8][i]>>8;
m3=dp1[m>>8][i]&((1<<8)-1);
t2=m&((1<<8)-1);
if(m3 || m2&t2)
continue;
if((m2|t2)==(1<<8)-1)
ans=(ans+1)%MOD;
}
else
for(i=0;i<count[m>>8];i++){
m2=dp1[m>>8][i]>>8;
m3=dp1[m>>8][i]&((1<<8)-1);
t2=m&((1<<8)-1);
if(m3&table[row-2] || m2&t2)
continue;
m2=((m2|t2)<<8)|(m3|(((int)table[row-2])&((1<<8)-1)));
if(dp2[row-1][m2]==-1)
solve2(row-1,m2);
ans=(ans+dp2[row-1][m2])%MOD;
}
dp2[row][m]=ans;
return;
}
In Python3 :
def memoize(func):
pool = {}
def wrapper(*arg):
if arg not in pool:
pool[arg] = func(*arg)
return pool[arg]
return wrapper
mod = 1000000007
shapes = (\
((1,0),(2,0),(2,1)),\
((0,1),(0,2),(-1,2)),\
((0,1),(1,1),(2,1)),\
((1,0),(0,1),(0,2)),\
((0,1),(-1,1),(-2,1)),\
((0,1),(0,2),(1,2)),\
((1,0),(2,0),(0,1)),\
((1,0),(1,1),(1,2)))
for case in range(int(input())):
Y,X = map(int,input().split())
mx = [int(''.join('0' if c =='.' else '1' for c in input().rstrip()), 2) for i in range(Y)]
mx = mx + 3*[0]
full = (1<<X)-1
@memoize
def rec(y,first,second,third):
if y==Y:
return 1 if first == second and second == third and third == 0 else 0
if first == full:
return rec(y+1,second,third,mx[y+3])
def can_fit(rows,shape,x_offset):
res = rows[:]
for x,y in shape:
x += x_offset
if x < 0 or x >= X or y < 0 or y >= Y:
return None
if res[y] & (1<<x) != 0:
return None
res[y] |= (1<<x)
return res
free = 0
while (first & (1<<free)) != 0:
free += 1
rows = [first | (1<<free),second,third]
ans = 0
for shape in shapes:
nrows = can_fit(rows,shape,free)
if nrows != None:
ans = (ans + rec(y, *nrows)) % mod
return ans
print(rec(0,mx[0],mx[1],mx[2]))
View More Similar Problems
Jim and the Skyscrapers
Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space
View Solution →Palindromic Subsets
Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t
View Solution →Counting On a Tree
Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n
View Solution →Polynomial Division
Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie
View Solution →Costly Intervals
Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the
View Solution →The Strange Function
One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting
View Solution →